При предсказании индексов удерживания с помощью глубокого обучения обычно нет способа оценить надежность предсказания для конкретной молекулы. В данной работе на примере неподвижных фаз на основе полиэтиленгликоля и базы данных NIST 17 показано, что в среднем предсказание тем точнее, чем более близкая по структуре к соединению, для которого выполняется предсказание, молекула находилась в обучающем наборе данных. Сходство по Танимото “молекулярных отпечатков пальцев” ECFP – наиболее подходящий для этой задачи алгоритм вычисления молекулярного подобия из четырех рассмотренных. Показано, что для ряда продуктов трансформации несимметричного диметилгидразина, структура которых была установлена с использованием такого предсказания, оно могло быть весьма ненадежным.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации