- PII
- S00444453725050146-1
- DOI
- 10.31857/S00444453725050146
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 99 / Issue number 5
- Pages
- 790-799
- Abstract
- Influence of stearic acid and graphite additives during mechanical alloying of titanium and silicon in petroleum ether on the structural-phase state and stability of titanium carbosilicide during annealing up to 1300°C is studied. Barrier layers on the particles formed in the presence of surfactants are shown to enhance stability of carbosilicide more effectively than graphite does. Surfactant additives promote the formation of additional silicon-containing phase and more efficient sintering of particles.
- Keywords
- механосплавление титан кремний ПАВ карбосилициды титана термическая стабильность
- Date of publication
- 15.11.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 14
References
- 1. Gao N.F., Li J.T., Zhang D., Miyamoto Y. // J. Europ. Ceram. Soc. 2002. V. 22. P. 2365. https://doi.org/10.1016/S0955-2219 (02)00021-3
- 2. Ghosh N.C. Synthesis and Tribological Characterization of in-situ Spark Plasma Sintered Ti3SiC2 and Ti3SiC2-TiC Composites. PhD theses. 2012. Oklahoma State University. https://shareok.org/bitstream/handle/11244/9936/Ghosh_okstate_0664M_12424.pdf?sequence=1&isAllowed=y
- 3. Chahhou B., Roger J. // Ceram. Int. 2022. V. 48(23A). P. 34635. https://doi.org/10.1016/j.ceramint.2022.08.051
- 4. Kero I. Ti3SiC2 Synthesis from TiC and Si Powders. PhD theses. 2010. Luleå University of Technology. https://doi.org/10.1002/9780470456361.ch3
- 5. Sabooni S., Karimzadeh F., Abbasi M.H. // Bull. Mater. Sci. 2012. V. 35(3). P. 439. https://doi.org/10.1007/s12034-012-0298-2
- 6. Thom A.J., Kim Y., Akinc M. // MRS Online Proceedings Library 1992. V. 288. P. 1037. https://doi.org/10.1557/PROC288-1037
- 7. Tang Z., Williams J.J., Thom A.J., Akinc M. // Intermetallics. 2008. V. 16. P. 1118. DOI: 10.1016/j.intermet.2008.06.013
- 8. Williams J.J., Akinc M. // Oxidation of Metals. 2002. V. 58(1/2). P. 57. https://doi.org/10.1023/A:1016012507682
- 9. Katz A.P., Lipsitt H.A., Mah T., Mendiratta M.G. // J. Mater. Sci. 1983. V. 18. P. 1983. https://doi.org/10.1007/BF00554991
- 10. Niu J., Sha J., Yang D. // Physica E. 2004. V. 23. P. 131. DOI: 10.1016/j.physe.2004.01.013
- 11. Pourebrahim A., Baharvandi H., Foratirad H., Ehsani N. // J. Alloys Compd. 2019. V. 789. P. 313. https://doi.org/10.1016/j.jallcom.2019.03.062
- 12. Thom A.J., Akinc M. // Report. 1995. DOI: 10.2172/106642 fatcat: bllt7korkjft7ey5uddxjpxse4
- 13. Atazadeh N., Heydari M.S., Baharvandi H.R., Ehsani N. // Int. J. Refract. Met. Hard Mater. 2016. V. 61. P. 67. http://dx.doi.org/10.1016/j.ijrmhm.2016.08.003
- 14. Kasraee K., Yousefpour M., Tayebifard S.A. // J. Alloys Compd. 2019. V. 779. P. 942. https://doi.org/10.1016/j.jallcom.2018.11.319
- 15. Wang L., Jiang W., Qin C., Chen L. // J. Mater. Sci. 2006. V. 41. P. 3831. DOI: 10.1007/s10853-005-5159-6
- 16. Lihua H., Yiying Y., Huawei G. // Wuhan Univ. J. National Sci. 1998. V. 3(4). P. 433. https://doi.org/10.1007/BF02830045
- 17. Hong J., Lee S., Lee S., et al. // Nanoscale. 2014. V. 6. P. 7503. https://doi.org/10.1039/C3NR06771H
- 18. Chang C., Yee D.S., Petkie R. // Appl. Phys. Letters 1989. V. 54. P. 2545. DOI: 10.1063/1.101045
- 19. An B.-S., Kwon Y., Oh J.-S., et al. // ACS Appl. Mater. Interfaces 2020. V. 12. P. 3104. DOI: 10.1021/acsami.9b15562
- 20. Luong T.K.P., Le Thanh V., Ghrib A., et al. // Phys. Scr. 2019. V. 94. P. 085803. https://doi.org/10.1088/1402-4896/ab182b
- 21. Govindarajan S., Moore J.J., Disam J., Suryanarayana C. // Met. Mater. Trans. A. 1999. V. 30. P. 799. https://doi.org/10.1007/s11661-999-1012-x
- 22. Kim I.-S., Shim C.-E., Kim S.W., et al. // Adv. Mater. 2023. V. 35. P. 2204912. DOI: 10.1002/adma.202204912
- 23. Syugaev A.V., Yazovskikh K.A., Lomayeva S.F., et al. // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 622. P. 126692. https://doi.org/10.1016/j.colsurfa.2021.126692
- 24. Eryomina M.A., Lomayeva S.F. // Adv. Powd. Techn. 2020. V. 31. P. 1789. https://doi.org/10.1016/j.apt.2020.02.014
- 25. Bolokang A.S., Motaung D.E., Arendse C.J., Muller T.F.G. // Adv. Powder Technol. 2015. V. 26. P. 169. http://refhub.elsevier.com/S0921-8831 (20)30066-2/h0005
- 26. Wan Y., Sun B., Liu W., Qi C. // J. Sol-Gel. Sci. Technol. 2012. V. 61. P. 558. DOI: 10.1007/s10971-011-2659-5
- 27. Miragliotta J., Benson R.C., Phillips T.E. // MRS Online Proceedings Library (OPL). 1996. V. 445. P. 217. https://doi.org/10.1557/PROC445-217
- 28. Shelekhov E.V., Sviridova T.A. // Met. Sci. Heat Treat. 2000. V. 42. P. 309. https://doi.org/10.1007/BF02471306
- 29. Eryomina M.A., Lomayeva S.F., Demakov S.L. // J. Sol. St. Chem. 2020. V. 290. P. 121575. https://doi.org/10.1016/j.jssc.2020.121575
- 30. Eremina M.A., Lomaeva S.F., Burnyshev I.N., et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 10. P. 1274. https://doi.org/10.1134/S0036023618100066
- 31. Eryomina M.A., Lomayeva S.F.// Adv. Powd. Technol. 2020. V. 31. P. 1789. https://doi.org/10.1016/j.apt.2020.02.014
- 32. Yan Z.H., Oehring M., Bormann R. // J. Appl. Phys. 1992. V. 72(6). P. 2478. https://doi.org/10.1063/1.351594
- 33. Sokolova E.I., Martirosyan N.A., Nersesyan M.D. // Russ. J. Inorg. Chem. 1981. V. 26(7). P. 1949. http://refhub.elsevier.com/S0921-8831 (20)30066-2/h0055
- 34. Ngai T.L., Kuang Y., Li Y. // Ceram. Int. 2012. V. 38. P. 463. https://doi.org/10.1016/j.ceramint.2011.07.028
- 35. Radhakrishnan R., Bhaduri S.B., Henager C.H. // 1995 International Conference and Exhibition on Powder Metallurgy and Particulate Materials At: Seattle, WA Volume: 3, pages 13/129–13/137.
- 36. Zueva L.V., Gusev A.I. // Physics of the Solid State. 1999. V. 41(7). P. 1134. (in Russ.).
- 37. Turchanin A.G., Turchanin M.A. Thermodynamics of Refractory Carbides. M.: Metallurgy, 1991. 352 p. (in Russ.)
- 38. Cao Z., Xie W., Jung I., Du G., Qiao Z. Critical Evaluation and Thermodynamic Optimization of the Ti-C-O System and its Applications to Carbothermic TiO2 Reduction Process // Met. Mater. Transact. B. 2015. V. 46. P. 1782. DOI: 10.1007/s11663-015-0344-8
- 39. Zhilyaev V.A., Patrakov E.I. // Powder Metallurgy and Functional Coatings 2014. № 3. P. 49. (in Russ.) https://doi.org/10.17073/1997-308X2014-3-49-54
- 40. Alyamovsky S.I., Zainulin Yu.G., Shveikin G.P. Oxycarbides and Oxynitrides of Metals IVA and VA Subgroups. M.: Nauka, 1981. 144 p. (in Russ.)
- 41. Williams J.J. Structure and High-Temperature Properties of Ti5Si3 with Interstitial Additions // Retrospective Theses and Dissertations. 1999. 12494. https://lib.dr.iastate.edu/rtd/12494
- 42. Williams J.J., Ye Y.Y., Kramer M.J., et al. // Intermetallics. 2000. V. 8. P. 937.
- 43. Thom A.J., Young V.G., Akinc M. // J. Alloys Compd. 2000. V. 296. P. 59. https://doi.org/10.1016/S0925-8388 (99)00533-2
- 44. Xiong Y., Wang W., Ye Z., et al. // J. Europ. Ceram. Soc. 2023. V. 43(9). P. 3988. https://doi.org/10.1016/j.jeurceramsoc.2023.03.030