ОХНМЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Ингибиторная защита низкоуглеродистой стали в потоке раствора серной кислоты, содержащего сульфат железа(III)

Код статьи
S0044453725010033-1
DOI
10.31857/S0044453725010033
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 99 / Номер выпуска 1
Страницы
32-43
Аннотация
Изучена коррозия низкоуглеродистой стали в потоке растворов H2SO4, содержащих Fe2(SO4)3, включая среды, с добавками ингибиторов коррозии – катамина АБ (смесь четвертичных аммониевых солей) и ИФХАН-92 (3-замещенное производное 1, 2, 4-триазола). В обсуждаемой среде на стали реализуются парциальные реакции анодной ионизации железа, катодного восстановления H+ и катионов Fe(III). Две первых реакции характеризуются кинетическим контролем, а последняя диффузионным. Ускоряющее действие Fe2(SO4)3 на коррозию стали в растворе H2SO4, преимущественно обусловлено восстановлением Fe(III). Напротив, в ингибированной кислоте ускоряющее действие катионов Fe(III) сказывается на всех парциальных реакциях стали. Данные по коррозии низкоуглеродистой стали в потоке исследуемых сред, полученные по массопотере металлических образцов, находятся в удовлетворительном соответствии с результатами исследования парциальных электродных реакций. Отмечено ускоряющее действие Fe2(SO4)3 на коррозию стали в потоке растворов H2SO4, в том числе в присутствии ингибиторов. В этих средах коррозия стали определяется конвективным фактором, что характерно для процессов с диффузионным контролем. Ингибитор ИФХАН-92, в отличии от катамина АБ, обеспечивает существенное замедление коррозии стали в потоке раствора H2SO4, содержащего Fe2(SO4)3. Причиной более высоких ингибиторных эффектов ИФХАН-92 при защите стали в рассматриваемых средах, в сравнении с катамином АБ, является более существенное замедление им парциальных электродных реакций металла.
Ключевые слова
конвекция диффузионная кинетика кислотная коррозия низкоуглеродистая сталь серная кислота сульфат железа (III) ингибиторы коррозии
Дата публикации
12.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
9

Библиография

  1. 1. Батраков В.В., Батраков В.П., Пивоварова Л.И., Соболь В.В. Коррозия конструкционных материалов. Газы и неорганические кислоты. Справочное издание. В двух книгах. Кн. 2. Неорганические кислоты. Изд. 2-е, перераб. и доп. М.: Интермет Инжиниринг, 2000. 320 с.
  2. 2. Verma C., Quraishi M.A., Ebenso E.E. // Int. J. Corros. Scale Inhib. 2020. V. 9. № 4. P. 1261–1276. https://doi.org/10.17675/2305-6894-2020-9-4-5
  3. 3. Глущенко В.Н., Силин М.А. Нефтепромысловая химия: Изд. в 5-ти томах. – Т. 4. Кислотная обработка скважин / Под ред. И.Т. Мищенко. М.: Интерконтакт Наука, 2010. 703 c.
  4. 4. Finšgar M., Jackson J. // Corros. Sci. 2014. V. 86. P. 17–41. https://doi.org/10.1016/j.corsci.2014.04.044
  5. 5. Авдеев Я.Г., Панова А.В., Андреева Т.Э. // Журн. физ. химии. 2023. Т. 97. № 5. C. 730. https://doi.org/10.31857/S0044453723050059 [Avdeev Ya.G., Panova A.V., Andreeva T.E. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 1018. https://doi.org/10.1134/S0036024423050059]
  6. 6. Кузнецов Ю.И., Андреев Н.Н., Маршаков А.И. // Журн. физ. химии. 2020. Т. 94. № 3. C. 381. https://doi.org/10.31857/S0044453720030152. [Kuznetsov Yu.I., Andreev N.N., Marshakov A.I. // Ibid. 2020. V. 94. № 3. P. 505. https://doi.org/10.1134/S0036024420030152]
  7. 7. Richardson J.A., Abdullahi A.A. / In: Reference Module in Materials Science and Materials Engineering. Elsevier, 2017. 24 p. https://doi.org/10.1016/B978-0-12-803581-8.10517-X
  8. 8. Ouarga A., Zirari T., Fashu S. et al. // J. Mater. Res. Technol. 2023. V. 26. P. 5105. https://doi.org/10.1016/j.jmrt.2023.08.198
  9. 9. Авдеев Я.Г., Ненашева Т.А., Лучкин А.Ю. и др. // Хим. физика. 2024. Т. 43. № 1. P. 24. https://doi.org/10.31857/S0207401X24010033 [Avdeev Ya.G., Nenasheva T.A., Luchkin A.Yu., Marshakov A.I., Kuznetsov Yu.I. // Russ. J. Phys. Chem. B. 2024. V. 18, P. 111. https://doi.org/10.1134/S1990793124010044]
  10. 10. Кеше Г. Коррозия металлов. Физико-химические принципы и актуальные проблемы. / Пер. с нем. под. ред. акад. Я.М. Колотыркина. М.: Металлургия, 1984. С. 76.
  11. 11. Плетнев М.А., Решетников С.М. // Защита металлов. 2004. Т. 40. № 5. С. 513. [Pletnev M.A., Reshetnikov S.M. // Prot. Met. 2004. V. 40. P. 460. https://doi.org/10.1023/B:PROM.0000043064.20548.e0]
  12. 12. Антропов Л.И. Теоретическая электрохимия. М.: Высш. школа, 1965. С. 348.
  13. 13. Bockris J.O’M., Drazic D., Despic A.R. // Electrochim. Acta. 1961. V. 4. № 2–4. P. 325. https://doi.org/10.1016/0013-4686 (61)80026-1
  14. 14. Florianovich G.M., Sokolova L.A., Kolotyrkin Ya.M. // Electrochim. Acta. 1967. V. 12. № 7. P. 879. https://doi.org/10.1016/0013-4686 (67)80124-5
  15. 15. Решетников С.М. Ингибиторы кислотной коррозии металлов. Л.: Химия, 1986. 144 с.
  16. 16. Плесков Ю.В., Филиновский В.Ю. Вращающийся дисковый электрод. М: Наука, 1972. 344 с.
  17. 17. Du C., Tan Q., Yin G., Zhang J. / In Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. All rights reserved. 2014. P. 171. https://doi.org/10.1016/B978-0-444-63278-4.00005-7
  18. 18. Jia Z., Yin G., Zhang J. / In Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. All rights reserved. 2014. P. 199–229. https://doi.org/10.1016/B978-0-444-63278-4.00006-9
  19. 19. Краткий справочник физико-химических величин. / Под ред. К.П. Мищенко и А.А. Равделя. Л.: Химия, 1967. С. 103.
  20. 20. Антропов Л.И., Погребова И.С. / Коррозия и защита от коррозии. Т. 2. (Итоги науки и техники). М.: ВИНИТИ, 1973. С. 27.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека