RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Heterogeneous-catalytic reaction of hydrogenation-dehydrogenation of aromatic compounds as the basis of accumulation, storage, and production of chemically pure hydrogen

PII
S0044453725010045-1
DOI
10.31857/S0044453725010045
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 1
Pages
44-49
Abstract
The quality of hydrogen released from naphthenic substrates (bicyclohexyl, ortho-, meta-, and para-isomers of perhydroterphenyl) as a result of catalytic dehydrogenation over 3% Pt/C (sibunit) is studied as a key criterion for the high degree of regeneration and recyclization of hydrogen storage systems. It is shown that chemically pure hydrogen without impurities of methane and carbon oxides can be obtained by the dehydrogenation of liquid organic hydrogen carriers (LOHC) if the initial aromatic hydrocarbons and the naphthenic substrates obtained from them were previously thoroughly thermally treated before the hydrogenation and dehydrogenation reactions, respectively, in an inert gas.
Keywords
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Reuß M., Grube Th., Robinius M. et al. // Appl. Energy. 2017. V. 200. P. 290.
  2. 2. Preuster P., Alekseev A., Wasserscheid P. // Annu. Rev. Chem. Biomol. Eng. 2017. V. 8. P. 445.
  3. 3. Rao P.Ch., Yoon M. // Energies. 2020. V. 13. P. 6040.
  4. 4. Makaryan I.A., Sedova I.V., Maksimov A.L. // Rus. J. Appl. Chem. 2020. V. 93. N. 12. P. 1815.
  5. 5. Jorschick H., Geißelbrecht M., Eßl M. et al. // Int. J. Hydrogen Energy. 2020. V. 45. P. 14897.
  6. 6. Дубинин А.М., Финк А.В, Кагарманов Г.Р. // Промышленная энергетика. 2007. № 5. С. 32.
  7. 7. Хоффман Е. Энерготехнологическое использование угля. М.: Энергоиздат, 1983. 328 C.
  8. 8. Иоффе В.Б. Основы производства водорода. Л.: Гостехиздат, 1960. 427 C.
  9. 9. Bulgarin A., Jorschick H., Preuster P. et al. // Int. J. Hydrogen Energy. 2020. V. 45. P. 712.
  10. 10. Якименко Л.М., Модылевская И.Д., Ткачек З.Я. Электролиз воды. М.: Химия. 1970. 318 C.
  11. 11. Tremel A., Wasserscheid P., Baldauf M., Hammer T. // Int. J. Hydrogen Energy. 2015. V. 40. P. 11457.
  12. 12. Cipriani G., Di Dio V., Genduso F., La Cascia D. // Int. J. Hydrogen Energy. 2014. V. 39. P. 8482.
  13. 13. Sekine Y., Higo T. // Topics in Catalysis. 2021. V. 64. P. 470.
  14. 14. Cho J.-Y., Kim H., O J.-E., Park B.Y. // Catalysts. 2021. V. 11. P. 14971525.
  15. 15. Кустов Л.М., Каленчук А.Н., Богдан В.И. // Успехи химии. 2020. Т. 89. С. 897.
  16. 16. Ren J., Musyoka N.M., Langmi H.W. et al. // Int. J. Hydrogen Energy. 2017. V. 42. P. 289.
  17. 17. Kalenchuk A.N., Bogdan V.I., Dunaev S.F., Kustov L.M. // Int. J. Hydrogen Energy. 2018. V. 43. P. 6191.
  18. 18. Каленчук А.Н., Богдан В.И., Кустов Л.М. // Журн.физ. химии. 2015. Т. 89. С. 20.
  19. 19. Кalenchuk А.N., Bogdan V.I., Dunaev S.F., Кustov L.М. // Fuel. 2020. V. 280. № 15. P. 118625.
  20. 20. Кalenchuk А.N., Кustov L.М. // Molecules. 2022. V. 27. № 7. P. 2236.
  21. 21. Кustov L.M., Кalenchuk A.N., Dunaev S.F., Bogdan V.I. // Mendeleev Commun. 2019. V. 29. P. 25.
  22. 22. Цырульников П.Г., Иост К.Н., Шитова Н.Б., Темерев В.Л. // Катал. хим. нефтехим. пром. 2016. Т. 16. С. 20.
  23. 23. Каленчук А.Н., Маслаков К.И., Богдан Т.В. и др. // Изв. АН. 2021. T. 2. 323.
  24. 24. Goethel P.J., Yang R.T. // J. Catal. 1988. V. 111. P. 220.
  25. 25. Bogdan V.I., Kalenchuk A.N., Chernavsky P.A. et al. // Int. J. Hydrogen Energy. 2021. V. 46. № 1. P. 1.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library