ОХНМЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Гетерогенно-каталитическая реакция гидрирования-дегидрирования ароматических соединений как основа систем аккумуляции, хранения и получения химически чистого водорода

Код статьи
S0044453725010045-1
DOI
10.31857/S0044453725010045
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 99 / Номер выпуска 1
Страницы
44-49
Аннотация
Исследовано качество водорода, высвобождаемого из нафтеновых субстратов (бициклогексил, орто-, мета- и пара-изомеры пергидротерфенила) в результате каталитического дегидрирования на катализаторе 3% Pt/C (сибунит), как ключевого критерия высокой регенерируемости и рециклизуемости систем хранения водорода и его выделения. Показано, что химически чистый водород без примесей метана и оксидов углерода может быть получен путем дегидрирования органических носителей водорода (LOHC), если при использовании исходных ароматических углеводородов и получаемых из них нафтеновых субстратов перед соответственно реакциями гидрирования и дегидрирования была предварительно проведена тщательная термическая обработка катализатора в атмосфере инертного газа.
Ключевые слова
каталитическое дегидрирование водород нафтеновые субстраты
Дата публикации
12.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
3

Библиография

  1. 1. Reuß M., Grube Th., Robinius M. et al. // Appl. Energy. 2017. V. 200. P. 290.
  2. 2. Preuster P., Alekseev A., Wasserscheid P. // Annu. Rev. Chem. Biomol. Eng. 2017. V. 8. P. 445.
  3. 3. Rao P.Ch., Yoon M. // Energies. 2020. V. 13. P. 6040.
  4. 4. Makaryan I.A., Sedova I.V., Maksimov A.L. // Rus. J. Appl. Chem. 2020. V. 93. N. 12. P. 1815.
  5. 5. Jorschick H., Geißelbrecht M., Eßl M. et al. // Int. J. Hydrogen Energy. 2020. V. 45. P. 14897.
  6. 6. Дубинин А.М., Финк А.В, Кагарманов Г.Р. // Промышленная энергетика. 2007. № 5. С. 32.
  7. 7. Хоффман Е. Энерготехнологическое использование угля. М.: Энергоиздат, 1983. 328 C.
  8. 8. Иоффе В.Б. Основы производства водорода. Л.: Гостехиздат, 1960. 427 C.
  9. 9. Bulgarin A., Jorschick H., Preuster P. et al. // Int. J. Hydrogen Energy. 2020. V. 45. P. 712.
  10. 10. Якименко Л.М., Модылевская И.Д., Ткачек З.Я. Электролиз воды. М.: Химия. 1970. 318 C.
  11. 11. Tremel A., Wasserscheid P., Baldauf M., Hammer T. // Int. J. Hydrogen Energy. 2015. V. 40. P. 11457.
  12. 12. Cipriani G., Di Dio V., Genduso F., La Cascia D. // Int. J. Hydrogen Energy. 2014. V. 39. P. 8482.
  13. 13. Sekine Y., Higo T. // Topics in Catalysis. 2021. V. 64. P. 470.
  14. 14. Cho J.-Y., Kim H., O J.-E., Park B.Y. // Catalysts. 2021. V. 11. P. 14971525.
  15. 15. Кустов Л.М., Каленчук А.Н., Богдан В.И. // Успехи химии. 2020. Т. 89. С. 897.
  16. 16. Ren J., Musyoka N.M., Langmi H.W. et al. // Int. J. Hydrogen Energy. 2017. V. 42. P. 289.
  17. 17. Kalenchuk A.N., Bogdan V.I., Dunaev S.F., Kustov L.M. // Int. J. Hydrogen Energy. 2018. V. 43. P. 6191.
  18. 18. Каленчук А.Н., Богдан В.И., Кустов Л.М. // Журн.физ. химии. 2015. Т. 89. С. 20.
  19. 19. Кalenchuk А.N., Bogdan V.I., Dunaev S.F., Кustov L.М. // Fuel. 2020. V. 280. № 15. P. 118625.
  20. 20. Кalenchuk А.N., Кustov L.М. // Molecules. 2022. V. 27. № 7. P. 2236.
  21. 21. Кustov L.M., Кalenchuk A.N., Dunaev S.F., Bogdan V.I. // Mendeleev Commun. 2019. V. 29. P. 25.
  22. 22. Цырульников П.Г., Иост К.Н., Шитова Н.Б., Темерев В.Л. // Катал. хим. нефтехим. пром. 2016. Т. 16. С. 20.
  23. 23. Каленчук А.Н., Маслаков К.И., Богдан Т.В. и др. // Изв. АН. 2021. T. 2. 323.
  24. 24. Goethel P.J., Yang R.T. // J. Catal. 1988. V. 111. P. 220.
  25. 25. Bogdan V.I., Kalenchuk A.N., Chernavsky P.A. et al. // Int. J. Hydrogen Energy. 2021. V. 46. № 1. P. 1.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека