RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Kinetic model of the temperature-programmed desorption of ammonia to study the acidity of heterogeneous catalysts

PII
S0044453725010053-1
DOI
10.31857/S0044453725010053
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 1
Pages
50-67
Abstract
A new method for processing the results of the temperature-programmed desorption (TPD) of ammonia from heterogeneous catalyst surfaces and an approach for automatic deconvolution of TPD kinetic curves are proposed. This method uses the Polanyi-Wigner kinetic model with formal kinetics approaches for simple reactions, which imposes restrictions on the observed orders of 1, 2, or 3. The parameters of TPD curves are selected based on the inverse simulation using the Runge-Kutta method and fitting them to experimental points using dynamic model parameters changes. As an example, several heterogeneous catalysts are presented in this work. TPD-NH3 of titanium silicalite-1 and silicalite-1 is obtained using one third-order desorption kinetic equation. TPD-NH3 of the three samples of γ-alumina is obtained using two desorption peaks with similar kinetic parameters.
Keywords
температурно-программируемая десорбция аммиака кислотность кинетика оксид алюминия силикалит–1 титансиликалит–1
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Da Ros S., Barbosa-Coutinho E., Schwaab M. et al. // Mater. Charact. 2013. V. 80. P. 50.
  2. 2. Phung T.K., Garbarino G. // J. Ind. Eng. Chem. 2017. V. 47. P. 288.
  3. 3. Yashnik S.A., Boltenkov V.V., Babushkin D.E. et al. // Kinet. Catal. 2022. V. 63. P. 555.
  4. 4. Cvetanoviĉ R.J., Amenomiya Y. // Adv. Catal. 1972. V. 6. P. 21.
  5. 5. Amenomiya Y., Chenier J.H.B., Cvetanović R.J. // J. Phys. Chem. 1964. V. 68. P. 52.
  6. 6. Serebrennikov D.V., Grigor’eva N.G., Khazipova A.N. et al. // Kinet. Catal. 2022. V. 63. P. 577.
  7. 7. Wu L., Su H., Liu Q. et al. // Ibid. 2022. V. 63. P. 498.
  8. 8. Busca G. // Chem. Rev. 2007. V. 107. P. 5366.
  9. 9. Kim C., Yan X.M., White J.M. // Rev. Sci. Instrum. 2000. V. 71. P. 3502.
  10. 10. Kechagiopoulos P.N., Thybaut J.W., Marin G.B. // Ind. Eng. Chem. 2014. V. 53. P. 1825.
  11. 11. Cvetanović R.J., Amenomiya Y. // Adv. Catal. 1967. V. 17. P. 103.
  12. 12. Rodríguez-González L., Hermes F., Bertmer M. et al. // Appl. Catal. A Gen. 2007. V. 328. P. 174.
  13. 13. Schwarz J.A. // Catal. Rev. – Sci. Eng. 1983. V. 25. P. 141.
  14. 14. Bhatia S., Beltramini J., Do D.D. // Catal. Today. 1990. V. 7. P. 309.
  15. 15. Kanervo J.M., Krause A.O.I. // J. Phys. Chem. B. 2001. V. 105. P. 9778.
  16. 16. Russell N.M., Ekerdt J.G. // Surf. Sci. 1996. V. 364. P. 199–218.
  17. 17. Niwa M., Katada N. // Chem. Rec. 2013. V. 13. P. 432.
  18. 18. Da Ros S., Valter Flores K.A., Schwaab M. et al. // J. Ind. Eng. Chem. 2021. V. 94. P. 425.
  19. 19. Xu J., Deng J. // ACS Omega. 2020. V. 5. P. 4148.
  20. 20. Campbell C.T., Sellers J.R.V. // Chem. Rev. 2013. V. 113. P. 4106.
  21. 21. King D.A. // Surf. Sci. 1975. V. 47. P. 384.
  22. 22. Parmon V. Thermodynamics of non-equilibrium processes for chemists with a particular application to catalysis // Elsevier. 2010.
  23. 23. Sidoumou M., Panella V., Suzanne J. // J. Chem. Phys. 1998. V. 101. P. 6338.
  24. 24. Schmid M., Parkinson G.S., Diebold U. // ACS Phys. Chem. Au. 2023. V. 3. P. 44.
  25. 25. Sprowl L.H., Campbell C.T., Árnadóttir L. // J. Phys. Chem. C. 2017. V. 121. P. 9655.
  26. 26. Sprowl L.H., Campbell C.T., Árnadóttir L. // Ibid. 2016. V. 120. P. 9719.
  27. 27. Banerjee A., Vithusha T., Krishna B.B. et al. // Bioresour. Technol. 2021. V. 340. P. 125534.
  28. 28. Vyazovkin S., Burnham A.K., Favergeon L. et al. // Thermochim. Acta. 2020. V. 689. P. 178597.
  29. 29. Luzina E.V., Shamanaeva I.A., Parkhomchuk E.V. // Pet. Chem. 2021. V. 61. P. 807.
  30. 30. Veselovskaya J.V., Parunin P.D., Netskina O.V. et al. // Energy. 2018. V. 159. P. 766.
  31. 31. Semeykina V.S., Polukhin A.V., Lysikov A.I. et al. // Catal. Letters. 2019 V. 3. P. 513.
  32. 32. Parkhomchuk E.V., Fedotov K.V., Lysikov A.I. et al. // Catal. Ind. 2022. V. 14. P. 86.
  33. 33. Dormand J.R., Prince P.J. // J. Comput. Appl. Math. 1980. V. 6. P. 19.
  34. 34. Shampine L.F., Reichelt M.W., Sci S.J. // Soc. Ind. Appl. Math. 1997. V. 18. P. 1.
  35. 35. Ламберов А.А., Халилов И.Ф., Ильясов И.Р. и др. // Вестн. Казанского Технологического Университета. 2011. № 13. С. 24
  36. 36. Ye Y.L., Fu M.Q., Chen H.L. et al. // J. Fuel Chem. Technol. 2020. V. 48. P. 311.
  37. 37. Efstathiou A.M., Fliatoura K. // Appl. Catal. B, Environ. 1995. V. 6. P. 35.
  38. 38. Guo R., Zhou Y., Pan W. et al. // J. Ind. Eng. Chem. 2013. V. 19. P. 2022.
  39. 39. Zhdanov V.P., Pavlicek J., Knor Z. // Catal. Rev. – Sci. Eng. 1988. V. 30. P. 501.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library