RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Synthesis of complex alumina-cobalt systems using thermally activated gibbsite product

PII
S0044453725010064-1
DOI
10.31857/S0044453725010064
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 1
Pages
68-83
Abstract
Using the methods of X-ray phase, thermal, microscopic, adsorption, and chemical analyses, the possibility of obtaining high-percentage mixed alumina-cobalt spinels by hydrochemical treatment under room or hydrothermal conditions of powder suspensions of the product of centrifugal thermal activation of gibbsite in aqueous solutions of cobaltous nitrate is studied and shown. Thermal treatment of hydrochemical interaction products, viz. xerogels in the range of 350–850°C, is established to lead to the formation of Co3O4 and CoAl2O4 spinel phases with their different ratio depending on the synthesis conditions. Thus, hydrochemical treatment of suspensions at room temperature provides, after calcination, the predominant formation of the Co3O4 phase while hydrothermal treatment at 150°C leads to a deeper interaction of suspension components at the treatment stage, forming CoAl2O4 after thermal treatment. It is noted that the maximum content of spinel of CoAl2O4 type (90% according to H2-TPR data) is observed for the hydrothermal product calcined at 850°C. The considered method is concluded to allow obtaining complex alumina-cobalt compounds with different phase ratio, reducing the number of initial reagents, preparation stages, completely excluding effluents, as well as reducing the total amount of nitrates by 75 wt.%, as compared to the nitrate classical co-precipitation scheme.
Keywords
гиббсит продукт центробежной термической активации гиббсита шпинели Co3O4 CoAl2O4
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Li F., Duan X. // Struct. Bond. 2006. V. 119. P. 193.
  2. 2. Tian Li., Huang K., Liu Y. et al. // J. Solid State. Chem. 2011. V. 184. P. 2961.
  3. 3. Merikhi J., Jungk H., Feldmann C. // J. Mat. Chem. 2002. V. 10. P. 1311.
  4. 4. Veronesi P., Leonelli C., Bondioli F. // Technologies. 2017. V. 5. P. 42.
  5. 5. Rangappa D., Ohara S., Naka T. et al. // J. Mat. Chem. 2007. V. 17. P. 4426.
  6. 6. Tang Y., Liu Y., Yu S. et al. // J. Power Sour. 2014. V. 256. P. 160.
  7. 7. Khodakov A.Y., Chu W., Fongarland P. et al. // Chem. Rev. 2007. V. 107. P. 1692.
  8. 8. Jacobs G., Das T.K., Zhang Y. et al. // App. Catal. A: General. 2002. V. 233. P. 263.
  9. 9. Narayanan S., Unnikrishnan R. // J. Chemical Society, Faraday Transactions. 1998. V. 94. P. 1124.
  10. 10. Gandia L.M., Montes M. // J. Molecular Catal. 1994. V. 94. P. 347.
  11. 11. Ragupathi С., Vijaya J.D., Narayanan S. et al. // Ceram. Intern. 2015. V. 41. P. 2069.
  12. 12. Choya A., Rivas B., Gutiérrez-Ortiz J.I. et al. // Materials. 2019. V. 19. P. 1.
  13. 13. Moraz-Lazaro J.P., Blanco O., Rodriguez-Betancourtt V.M. et al. // Sensor and Actuators B: Chemical. 2016. V. 226. P. 518.
  14. 14. Yang He., Goldbach A., Shen W. // Int. J. Hydrogen Energy. 2024. V. 51. P. 1360.
  15. 15. Das T., Kweon S., Nah In. et al. // Cryogenics. 2015. V. 69. P. 36.
  16. 16. Жужгов А.В., Криворучко О.П., Исупова Л.А. и др. // Катализ промышленности. 2017. Т. 17. № 5. С. 346.
  17. 17. Буянов Р.А., Пармон В.Н. // Катализ в промышленности. 2017. Т. 17. № 5. С. 390.
  18. 18. Жужгов А.В., Криворучко О.П., Исупова Л.А. // Журн. физ. химии. 2020. Т. 94. № 1. С. 50.
  19. 19. Boeva O., Antonov A., Zhavoronkova K. // Catal. Comm. 2021. V. 148. P. 106173.
  20. 20. Lu H.T., Li W., Miandoab E.S. et al. // Front. Chem. Sci. Eng. 2021. V. 15. P. 464.
  21. 21. Aasadni M., Mehrpooya M., Ghorbani B. // J. Cleaner Production. 2021. V. 278. P. 123872.
  22. 22. Wang C., Lui S., Lui L. et al. // J. Mater. Chem. Phys. 2006. V. 96. P. 361.
  23. 23. Casado P.G., Rasines I. // J. Solid state Chem. 1984. V. 52. P. 187.
  24. 24. Li W., Li J., Guo J. // J. Eur. Ceram. Soc. 2003. V. 23. P. 2289.
  25. 25. Федотов M.A., Тарабан Е.А., Криворучко О.П. и др. // Журн. неорган. химии. 1990. Т. 35. № 5. С. 1226.
  26. 26. Bai C.S., Soled S., Dwight K. // J. Solid State Chem. 1991. V. 91. P. 148.
  27. 27. Fogg A.M., Williams G.R., Chester R. et al. // J. Mater. Chem. 2004. V. 14. P. 2369.
  28. 28. Williams G.R., Moorhouse S.J., Timothy J.P. et al. // Dalton Trans. 2011. V. 40. P. 6012.
  29. 29. Криворучко О.П., Буянов Р.А., Парамзин С.М. и др. // Кинетика и катализ. 1988. Т. 29. № 1. С. 252.
  30. 30. Буянов Р.А., Криворучко О.П., Золотовский Б.П. // Изв. СО АН СССР. Сер. хим. наук. 1986. № 11. Вып. 4. С. 39.
  31. 31. Ingram-Jones V.J., Davies R.C.T., Southern J.C. et al. // J. Mat. Chem. 1996. V. 6. P. 73.
  32. 32. Танашев Ю.Ю., Мороз Э.М., Исупова Л.А. и др. // Кинетика и катализ. 2007. Т. 48. № 1. С. 161.
  33. 33. Zhuzhgov A.V., Kruglyakov V.Y., Glazneva T.S. et al. // Chemistry. 2022. V. 4. P. 316.
  34. 34. Жужгов А.В., Кругляков В.Ю., Супрун Е.А. и др. // Журн. прикл. химии. 2022. Т. 95. № 4. С. 450.
  35. 35. Zhuzhgov A.V., Isupova L.A., Suprun E.A. et al. // Chem. Engineering. 2023. V. 7. № 4. 71:1–16.
  36. 36. Ivanova Y., Zhuzhgov A., Isupova L. // Inorganic Chemistry Communications. 2024. V. 162. P. 1.
  37. 37. Чукин Г.Д. Строение оксида алюминия и катализаторов гидрообессеривания. Механизмы реакций. М.: Типография Паладин, ООО “Принта”, 2010. 288 с.
  38. 38. Косенко Н.Ф. // Изв. высших учебных заведений. 2011. Т. 54. № 5. С. 3.
  39. 39. Krivoruchko O.P., Plyasova L.M., Zolotovskii B.P. et al. // React. Kinet. Catal. Lett. 1983. V. 22. № 3–5. P. 375.
  40. 40. Van Nordstrand R.A., Hettinger W.P., Keith C.D. // Nature. 1956. V. 177. P. 713.
  41. 41. Шефер К.И., Черепанова С.В., Мороз Э.М. и др. // Журн. структур. химии. 2010. Т. 51. № 1. С. 137.
  42. 42. Danilevich V., Isupova L., Parmon V. // Cleaner Engineering and Technology. 2021. V. 3. P. 1.
  43. 43. Исупова Л.А., Иванова Ю.А. // Докл. РАН. Химия, науки о материалах (Докл. Академии наук до 2019 года). 2023. Т. 511. С. 60.
  44. 44. Lin H.K., Wang C.B., Chiu H.C. et al. // Catal. Lett. 2023. V. 86. P. 63.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library