ОХНМЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Исследование особенностей формирования и электрохимических свойств нанокомпозита Ge-Co на медной подложке

Код статьи
S0044453725010107-1
DOI
10.31857/S0044453725010107
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 99 / Номер выпуска 1
Страницы
107-113
Аннотация
Впервые продемонстрирована возможность электрохимического формирования наноструктур Ge-Co на медной подложке, которые представляют собой глобулы, размер которых достигает 1 мкм, состоящие из более мелких частиц, размер которых не превышает 10 нм. Такие наноструктуры демонстрируют достаточно высокую обратимую емкость около 850 мАч/г и хорошую стабильность при длительном циклировании.
Ключевые слова
германий наноструктуры электрохимическое осаждение литий-ионный аккумулятор
Дата публикации
12.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
2

Библиография

  1. 1. Park M., Kim K., Kim J. et al. // Adv. Mater. 2010. V. 22. P. 415.
  2. 2. Harper G., Sommerville R., Kendrick E. et al. // Nature. 2019. V. 575. P. 75.
  3. 3. Choi S., Kwon T.W., Coskun A. et al. // Science. 2017. V. 357. P. 279.
  4. 4. Graetz J., Ahn C.C., Yazami R. et al. // J. Electrochem. Soc. 2004. V. 151. P. A698.
  5. 5. Chou C.-Y., Hwang G.S. // J. Power Sources. 2014. V. 263. P. 252.
  6. 6. Hao J., Wang Y., Guo Q. // Part. Part. Syst. Charact. 2019. V. 36. Article # 1900248.
  7. 7. Wu S., Han C., Iocozzia J. et al. // Angew. Chem. Int. Ed. 2016. V. 55. P. 7898.
  8. 8. Liu Y., Zhang S., Zhu T. // Chem. Electro. Chem. 2014. V. 1. P. 706.
  9. 9. Kim D.-H., Park C.M. // Mater. Today Energy. 2020. V. 18. Article # 100530.
  10. 10. Jing Y.-Q., Qu J., Jia X.-Q. et al. // Chem. Eng. J. 2021. V. 408. Article # 127266.
  11. 11. Zhao W., Chen J., Lei Y. et al. // J. Alloys Compd. 2020. V. 815. Article # 152281.
  12. 12. Gavrilin I.M., Kudryashova Yu.O., Kuz’mina A.A. et al. // J. Electroanal. Chem. 2021. V. 888. Article # 115209.
  13. 13. Kulova T.L., Skundin A.M., Gavrilin I.M. et al. // Batteries. 2022. V. 8. P. 98.
  14. 14. Gavrilov S.A., Gavrilin I.M., Martynova I.K. et al. // 2023. Ibid. V. 9. P. 445.
  15. 15. Gavrilin I., Martynova I., Petukhov I. et al. // J. Solid State Electrochem. 2023. V. 28. P. 1521.
  16. 16. Lee S.M., Ikeda S., Otsuka Y. et al. // Electrochim. Acta. 2012. V. 79. P. 189.
  17. 17. Chung Y., Lee C.-W. // J. Electrochem. Sci. Technol. 2013. V. 4. P. 93.
  18. 18. Huang Q., Reuter K., Amhed S. et al. // J. Electrochem. Soc. 2011. V. 158. P. D57.
  19. 19. Valderrama R.C., Miranda-Hern´andez M., Sebastian P.J. et al. // Electrochim. Acta. 2008. V. 53. P. 3714.
  20. 20. Liang X., Kim Y.-G., Gebergziabiher D.K. et al. // Langmuir. 2010. V. 26. P. 2877.
  21. 21. Bahmani E., Zakeri A., Aghdam A.S.R. // J. Mater. Sci. 2021. V. 56. P. 6427.
  22. 22. Zhao F., Xu Y., Mibus M. et al. // J. Electrochem. Soc. 2017. V. 164. P. D354.
  23. 23. Nzereogu P.U., Omah A.D., Ezema F.I. et al. // Appl. Surf. Sci. Adv. 2022. V. 9. Article # 100233.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека