- PII
- S0044453725010146-1
- DOI
- 10.31857/S0044453725010146
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 99 / Issue number 1
- Pages
- 144-152
- Abstract
- When predicting retention indices using deep learning, there is usually no way to assess the reliability of the prediction for a particular molecule. In this work, using stationary phases based on polyethylene glycol and the NIST 17 database as an example, it is shown that, on average, the closer the molecule in the training data set is to the compound being predicted, the more accurate the prediction. Tanimoto similarity of “molecular fingerprints” ECFP is the most appropriate molecular similarity calculation algorithm for this problem among the four considered. It is shown that for a number of transformation products of unsymmetrical dimethylhydrazine, whose structure was established using this prediction, it could be very unreliable.
- Keywords
- газовая хроматография индексы удерживания машинное обучение глубокое обучение молекулярное подобие
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 10
References
- 1. Tarján G., Nyiredy S., Györ M. et al. // J. of Chromatography A. 1989. V. 472. P. 1. https://doi.org/10.1016/S0021-9673 (00)94099-8
- 2. Franke J.-P., Wijsbeek J., De Zeeuw R.A. // J. of Forensic Sciences. 1990. V. 35. № 4. P. 813. https://doi.org/10.1520/JFS12893J
- 3. Zellner B.A., Bicchi C., Dugo P. et al. // Flavour and Fragrance J. 2008. V. 23. № 5. P. 297–314. https://doi.org/10.1002/ffj.1887
- 4. Milman B.L., Zhurkovich I.K. // TrAC Trends in Analytical Chemistry. 2016. V. 80. P. 636–640. https://doi.org/10.1016/j.trac.2016.04.024
- 5. Vinaixa M., Schymanski E.L., Neumann S. et al. // TrAC Trends in Analytical Chemistry. 2016. V. 78. P. 23. https://doi.org/10.1016/j.trac.2015.09.005
- 6. Matyushin D.D., Sholokhova A.Yu., Karnaeva A.E. et al. // Chemometrics and Intelligent Laboratory Systems. 2020. V. 202. P. 104042. https://doi.org/10.1016/j.chemolab.2020.104042
- 7. Schymanski E.L., Meringer M., Brack W. // Analytical Chemistry. 2011. V. 83. № 3. P. 903. https://doi.org/10.1021/ac102574h
- 8. Dossin E., Martin E., Diana P. et al. // Analytical Chemistry. 2016. V. 88. № 15. P. 7539–7547. https://doi.org/10.1021/acs.analchem.6b00868
- 9. Sholokhova A.Yu., Matyushin D.D., Grinevich O.I. et al. // Molecules. 2023. V. 28. № 8. P. 3409. https://doi.org/10.3390/molecules28083409
- 10. Su Q.-Z., Vera P., Salafranca J. et al. // Resources, Conservation and Recycling. 2021. V. 171. P. 105640. https://doi.org/10.1016/j.resconrec.2021.105640
- 11. Su Q.-Z., Vera P., Nerín C. et al. // Resources, Conservation and Recycling. 2021. V. 167. P. 105365. https://doi.org/10.1016/j.resconrec.2020.105365
- 12. Sholokhova A.Yu., Grinevich O.I., Matyushin D.D. et al. // Chemosphere. 2022. V. 307. P. 135764. https://doi.org/10.1016/j.chemosphere.2022.135764
- 13. Matyushin D.D., Buryak A.K. // IEEE Access. 2020. V. 8. P. 223140. https://doi.org/10.1109/ACCESS.2020.3045047
- 14. Debus B., Parastar H., Harrington P. et al. // TrAC Trends in Analytical Chemistry. 2021. V. 145. P. 116459. https://doi.org/10.1016/j.trac.2021.116459
- 15. Dong S., Wang P., Abbas K. // Computer Science Review. 2021. V. 40. P. 100379. https://doi.org/10.1016/j.cosrev.2021.100379
- 16. Matyushin D.D., Sholokhova A.Yu., Buryak A.K. // Intern. J. of Molecular Sciences. 2021. V. 22. № 17. P. 9194. https://doi.org/10.3390/ijms22179194
- 17. Matyushin D.D., Sholokhova A.Yu., Buryak A.K. // J. of Chromatography A. 2019. V. 1607. P. 460395. https://doi.org/10.1016/j.chroma.2019.460395
- 18. Anjum A., Liigand J., Milford R. et al. // Ibid. 2023. V. 1705. P. 464176. https://doi.org/10.1016/j.chroma.2023.464176
- 19. Qu C., Schneider B.I., Kearsley A.J. et al. // Ibid. 2021. V. 1646. P. 462100. https://doi.org/10.1016/j.chroma.2021.462100
- 20. Vrzal T., Malečková M., Olšovská J. // Analytica Chimica Acta. 2021. V. 1147. P. 64. https://doi.org/10.1016/j.aca.2020.12.043
- 21. Geer L.Y., Stein S.E., Mallard W.G. et al. // J. of Chemical Information and Modeling. 2024. V. 64. № 3. P. 690–696. https://doi.org/10.1021/acs.jcim.3c01758
- 22. Raymond J.W., Gardiner E.J., Willett P. // The Computer J. 2002. V. 45. № 6. P. 631–644. https://doi.org/10.1093/comjnl/45.6.631
- 23. Bender A., Glen R.C. // Organic & Biomolecular Chemistry. 2004. V. 2. № 22. P. 3204. https://doi.org/10.1039/B409813G
- 24. Morehouse N.J., Clark T.N., McMann E.J. et al. // Nature Communications. 2023. V. 14. № 1. P. 308. https://doi.org/10.1038/s41467-022-35734-z
- 25. Rogers D., Hahn M. // J. of Chem. Inform. and Modeling. 2010. V. 50. № 5. P. 742. https://doi.org/10.1021/ci100050t
- 26. Hoo Z.H., Candlish J., Teare D. // Emergency Medicine J. 2017. V. 34. № 6. P. 357. https://doi.org/10.1136/emermed-2017-206735
- 27. Polo T.C.F., Miot H.A. // J. Vascular Brasileiro. 2020. V. 19. P. e20200186. https://doi.org/10.1590/1677-5449.200186
- 28. Popov M.S., Ul’yanovskii N.V., Kosyakov D.S. // Microchemical J. 2024. V. 197. P. 109833. https://doi.org/10.1016/j.microc.2023.109833