RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Thermodynamic properties of ytterbium titanate

PII
S0044453725020029-1
DOI
10.31857/S0044453725020029
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 2
Pages
184-194
Abstract
The isobaric heat capacity of a single-phase sample of ytterbium titanate of pyrochlore structural type synthesized and characterized by XRD, SEM, and EDX methods in the temperature range 2–1869 K is measured for the first time. The existence of magnetic transformation at < 20 K and the absence of structural transformations in the entire region of existence of Yb2Ti2O7 are confirmed. Thermodynamic functions, viz. the entropy and the enthalpy increment and the Gibbs free energy of formation of Yb2Ti2O7 from elements and binary oxides at 298.15 K are calculated. The contribution to the heat capacity of the Schottky anomaly is estimated.
Keywords
иттербия титанат синтез термодинамические свойства аномалия Шоттки
Date of publication
13.09.2025
Year of publication
2025
Number of purchasers
0
Views
30

References

  1. 1. Greedan J.E. // J. Alloys Compd. 2006. V. 408–412. P. 444. https://doi.org/10.1016/j.jallcom.2004.12.084
  2. 2. Ross K.A., Savary L., Gaulin B.D. et al. // Phys. Rev. X. 2011. V. 1. 021002 http://doi.org/10.1103/PhysRevX.1.021002
  3. 3. Tokiwa Y., Yamashita T., Udagawa M. et al. // Nat. Commun. 2016. V. 7. 10807. https://doi.org/10.1038/ncomms10807
  4. 4. Ramirez A., Hayashi A., Cava R. et al. // Nature. 1999. V. 399. P. 333. https://doi.org/10.1038/20619
  5. 5. Bramwell S.T., Harris M.J., den Hertog B.C. et al. // Phys. Rev. Lett. 2001. V. 87. 047205. https://doi.org/10.1103/PhysRevLett.87.047205
  6. 6. Scheie A., Kindervater J., Säubert S. et al. // Phys. Rev. Lett. 2017. V. 119. 127201. https://doi.org/10.1103/PhysRevLett.119.127201
  7. 7. Yaouanc A., de Réotier P.D., Marin C. et al. // Phys. Rev. B. V. 84. 172408. https://doi.org/10.1103/PhysRevB.84.172408
  8. 8. Blöte H.W.J., Wielinga R.F., Huiskamp W.J. // Physica. 1969. V. 43. P. 549. https://doi.org/10.1016/0031-8914 (69)90187-6
  9. 9. D’Ortenzio R.M., Dabkowska H.A., Dunsiger S.R. et al. // Phys. Rev. B. 2013. V. 88. 134428. https://doi.org/10.1103/PhysRevB.88.134428
  10. 10. Hamachi N., Yasui Y., Araki K. et al. // AIP Advances. 2016. V. 6. 055707. https://doi.org/10.1063/1.4944337
  11. 11. Bonville P., Hodges J.A., Bertin E. et al. // ICAME. 2003. Springer. Dordrecht. https://doi.org/10.1007/978-1-4020-2852-6_17
  12. 12. Aughterson R.D., Lumpkin G.R., Bedfort A. et al. // Ceram. Int. 2023. V. 49. P. 11149. https://doi.org/10.1016/j.ceramint.2022.11.311
  13. 13. Guo H., Zhang K., Li Y. // Ceram. Int. 2024. V. 50. P. 21859. https://doi.org/10.1016/j.ceramint.2024.03.298
  14. 14. Teng Z., Tan Y., Zeng S. et al. // J. Europ. Ceram. Soc. 2021. V. 41. P. 3614. https://doi.org/10.1016/j.jeurceramsoc.2021.01.01
  15. 15. Chung C.-K., O’Quinn, Neuefeind J.C. et al. // Acta Mater. 2019. V. 181. P. 309. https://doi.org/ j.actamat.2019.09.022
  16. 16. Lian J., Chen J., Wang L.M. et al. // Phys. Rev. B. 2003. V. 68. 134107. https://doi.org/PhysRevB.68.134107
  17. 17. Helean K.B., Ushakov S.V., Brown C.E. et al. // J. Sol. State Chem, 2004. V. 177. P. 1858. https://doi.org/ j.jssc.2004.01.009
  18. 18. Резницкий Л.А. // Неорган. материалы. 1993. Т. 29. С. 1310 [Reznitsky L.A. // Inorg. mater. 1993. V. 29. P. 1310. On Russian].
  19. 19. Гуськов В.Н., Гавричев К.С., Гагарин П.Г., Гуськов А.В. // ЖНХ. 2019. Т. 64. С. 1072. https://doi.org/10.1134/S0044457X19100040 [Guskov V.N., Gavrichev K.S., Gagarin P.G., Guskov A.V. // Russ. J. Inorgan. Chem. 2019. V. 64. P. 1265. https://doi.org/10.1134/S0036023619100048].
  20. 20. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Ceram. Int. 2021. V. 47. P. 28004. https://doi.org/10.1016/j.ceramint.2021.06.125
  21. 21. Rosen P.F., Woodfield B.F. // J. Chem. Thermodyn. 2020. V. 141. P. 105974. https://doi.org/10.1016/j.jct.2019.105974
  22. 22. Sabbah R., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331. P. 93. https://doi.org/10.1016/S0040-6031 (99)00009-X
  23. 23. Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94(5). P. 573. https://doi.org/10.1515/pac-2019-0603
  24. 24. Farmer J.M., Boatner L.A., Chakouakos B.C. et al. // J. Alloys Compd. 2014. V. 605. P. 63. https://doi.org/10.1016/j.jallcom.2014.03.153
  25. 25. Li Q.J., Xu L.M., Fan C. et al. // J. Crystal Growth. V. 377. P. 96. https://doi.org/10.1016/j.jcrysgro.2013.04.048
  26. 26. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50–61. https://doi.org/10.1016/j.calphad.2018.02.001
  27. 27. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083–2094. https://doi.org/10.1021/je400316m
  28. 28. Tari A. The specific heat of matter at low temperatures // Imperial College Press. 2003. 211 p. https://doi.org/10.1142/9781860949395_0006
  29. 29. Li S.J., Che H.L., Wu J.C. et al. // AIP Advances. 2018. V. 8. 055705. https://doi.org/10.1063/1.5005988
  30. 30. Westrum E.F., Jr. // J. Therm. Anal. 1985. V. 30. P. 1209. https://doi.org/10.1007/BF01914288
  31. 31. Bissengalieva M.R., Knyazev A.V., Bespyatov M.A. et al. // J. Chem. Thermodyn. 2022. V. 165. P. 106646. https://doi.org/10.1016/j.jct.2021.103346
  32. 32. Gruber J., Westrum E.F. // J. Chem. Phys. 1982. V. 76. P. 4600–4605. https://doi.org/10.1007/978-1-4613-3406-4_55
  33. 33. Saha S., Singh S., Dkhil B. et al. // Physical Review B. 2008. V. 78. P. 214102–1–214102–10. https://doi.org/10.1103/PhysRevB.78.214102
  34. 34. Konings R.J.M., Beneš O., Kovács A. et al. // J. Phys. Chem. Refer. Data. 2014. V. 4. P. 013101. https://doi.org/10.1063/1.4825256
  35. 35. Chase M.W., Jr. // J. Phys. Chem. Refer. Data Monograph No. 9 NIST-JANAF. Washington DC, 1998.
  36. 36. Глушко В.П. Термические константы веществ. Справочник. Москва, 1965–1982. https://www.chem.msu.su/cgibin/tkv.pl?show=welcome.html&_ga=2.137226480.1380683462.1715071323-1284717817.1617178349 [Glushko V.P. Thermal constants of substances. Reference book. Moscow 1965–1982. https://www.chem.msu.su/cgibin/tkv.pl?show=welcome.html&_ga=2.137226480.1380683462.1715071323-1284717817.1617178349].
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library