RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Quantum chemical study of the reaction of N,O-dimethylcarbamate with methylamine monomer and dimer

PII
S0044453725020052-1
DOI
10.31857/S0044453725020052
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 2
Pages
205-215
Abstract
Reactions of N,O-dimethylcarbamate with methylamine monomer and dimer as a model for the polyurea preparation are studied by B3LYP and M06 quantum-chemical methods. Both a one-step interaction mechanism and a two-step route with an intermediate formed containing a tetracoordinated carbon atom are considered. The latter route is unlikely since the formation of the intermediate is characterized by small values of the equilibrium constants. Reactions involving the methylamine dimer are more favorable kinetically and thermodynamically. Kinetic preference of reactions with methylamine dimer participation is due to its increased donor and acid-base properties as compared to its monomer. The thermodynamic preference of interaction with methylamine dimer is due to a higher entropy of transformation as compared to the reaction with its monomer.
Keywords
мочевины термодинамика механизмы реакций гомоассоциаты метиламина потенциалы ионизации кислотно-основные свойства
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Shojaei B., Najafi M., Yazdanbakhsh A. et al. // Polym. Adv. Technol. 2021. V.32. № 8. P. 2797. https://doi.org/10.1002/pat.5277
  2. 2. Wang Y., Ding L., Lin J. et al. // Polymers. 2024. V. 16. № 3. P. 440. https://doi.org/10.3390/polym16030440
  3. 3. Leventis N. // Polymers. 2022. V. 14. № 5. P. 969. https://doi.org/10.3390/polym14050969
  4. 4. Zhang Z., Qian L., Cheng J. et al. // Chem. Mater. 2023. V. 35. № 4. P. 1806. https://doi.org/10.1021/acs.chemmater.2c03782
  5. 5. Zhang Z., Qian L., Huang G. et al. // Adv. Funct. Mater. 2024. V. 34. № 4. P. 2310603. https://doi.org/10.1002/adfm.202310603
  6. 6. Polyurea: Synthesis, Properties, Composites, Production, and Applications / Eds. P. Pasbakhsh, D. Mohotti, K. Palaniandy et al. Amsterdam: Elsevier, 2023. 430 p.
  7. 7. Tripathi M., Parthasarathy S., Roy P.K. // J. Appl. Polym. Sci. 2020. V. 137. № 16. P. 48573. https://doi.org/10.1002/app.48573
  8. 8. Sonnenschein M.F. Polyurethanes: science, technology, markets, and trends. Hoboken: Wiley, 2021. 492 p.
  9. 9. Isocyanates: Sampling, Analysis, and Health Effects / Eds. J. Lesage, I. DeGraff, R. Danchik. West Conshohocken: ASTM Int., 2001. 133 p.
  10. 10. MDI and TDI: safety, health and the environment: a source book and practical guide / Eds. D.C. Allport, D.S. Gilbert, S.M. Outterside. Chichester: Wiley, 2003. 438 p.
  11. 11. Santana J.S., Cardoso E.S., Triboni E.R. et al. // Polymers. 2021. V. 13. № 24. P. 4393. https://doi.org/10.3390/polym13244393
  12. 12. Pyo S.H., Park J.H., Chang T.S. et al. // CRGSC. 2017. V. 5. P. 61. https://doi.org/10.1016/j.cogsc.2017.03.012
  13. 13. Montero R., Lamas I., León I. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. № 6. P. 3098. https://doi.org/10.1039/C8CP06416D
  14. 14. Pérez C., León I., Lesarri A. et al. // Ang. Chem. 2018. V. 130. № 46. P. 15332. https://doi.org/10.1002/anie.201808602
  15. 15. Malloum A., Conradie J. // J. Mol. Liq. 2021. V. 336. P. 116199. https://doi.org/10.1016/j.molliq.2021.116199
  16. 16. Brutschy B., Bisling P., Rühl E. et al. // Z. Phys. D – Atoms Molec. Clusters. 1987. V. 5. P. 217. https://doi.org/10.1007/BF01436927
  17. 17. Zhang B.B., Kong X.T., Jiang S.K. et al. // Chin. J. Chem. Phys. 2017. V. 30. № 6. P. 691. https://doi.org/10.1021/acs.jpca.7b08096
  18. 18. Mishra S., Nguyen H.Q., Huang Q.R. et al. // J. Chem. Phys. 2020. V. 153. № 19. P. 194301. https://doi.org/10.1063/5.0025778
  19. 19. Huang Q.R., Endo T., Mishra S. et al. // Phys. Chem. Chem. Phys. 2021. V. 23. № 6. P. 3739. https://doi.org/10.1039/d0cp05745b
  20. 20. Hayama S., Wasse J.C., Skipper N.T. et al. // J. Phys. Chem. B. 2001. V. 106. № 1. P. 11. https://doi.org/10.1080/002689700 10020023
  21. 21. Kosztolányi T., Bakó I., Pálinkás G. // J. Chem. Phys. 2003. V. 118. № 10. P. 4546. https://doi.org/10.1063/1.1543143
  22. 22. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.
  23. 23. Becke A.D. // J. Chem. Phys. 1992. V. 96. № 3. P. 2155. https://doi.org/10.1063/1.462066
  24. 24. Becke A.D. // J. Chem. Phys. 1992. V. 97. № 12. P. 9173. https://doi.org/10.1063/1.463343
  25. 25. Becke A.D. // J. Chem. Phys. 1993. V. 98. № 7. P. 5648. https://doi.org/10.1063/1.464913
  26. 26. Zhao Y., Truhlar D.C. // Theor. Chem. Acc. 2008. V. 120. P. 215. https://doi.org/10.1007/s00214-007-0310-x
  27. 27. Sholl D.S., Steckel J.A. Density functional theory: a practical introduction / Hoboken: John Wiley & Sons. 2023. 224 p.
  28. 28. Zhao Y., Truhlar D.C. // Acc. Chem. Res. 2008. V. 41. № 2. P. 157. https://doi.org/10.1021/ar700111a
  29. 29. Keeler J., Wothers P. Chemical Structure and Reactivity: an Integrated Approach. Oxford: Oxford University Press. 2014. 877 p.
  30. 30. Maksic Z.B., Kovacevic B., Vianello R. // Chem. Rev. 2012. V. 112. № 10. P. 5240. https://doi.org/10.1021/cr100458v
  31. 31. Cabaleiro-Lago E.M., Rodrı́guez-Otero J. // J. Mol. Struct.: THEOCHEM. 2002. V. 586. № 1–3. P. 225. https://doi.org/10.1016/S0166-1280 (02)00068-4
  32. 32. Mishra S., Nguyen H.Q., Huang Q.R. et al. // J. Chem. Phys. 2020. V. 153. № 19. P. 194301. https://doi.org/10.1063/5.0025778
  33. 33. Zipse H., Wang L.H., Houk K.N. // Liebigs Ann. Chem. 1996. V. 1996. № 10. P. 1511. https://doi.org/10.1002/jlac.199619961004
  34. 34. Wang L.H., Zipse H. // Liebigs Ann. Chem. 1996. V. 1996. № 10. P. 1501. https://doi.org/10.1002/jlac.199619961003
  35. 35. Kakuchi R., Fukasawa K., Kikuchi M. et al. // Macromolecules. 2021. V. 54. № 1. P. 364. https://doi.org/10.1021/acs.macromol.0c02078
  36. 36. Zabalov M.V., Levina M.A., Krasheninnikov V.G. et al. // Polymer Sci. Ser. B. 2023. V. 65. № 4. P. 467. https://doi.org/10.1134/S1560090423701063
  37. 37. Zabalov M.V., Tiger R.P., Berlin A.A. // Russ. Chem. Bull. 2012. V. 61. № 3. P. 518. https://doi.org/10.1007/s11172-012-0076-8
  38. 38. Fox J.M., Dmitrenko O., Liao L.A. et al. // J. Org. Chem. 2004. V. 69. № 21. P. 7317. https://doi.org/10.1021/jo049494z
  39. 39. Lawal M.M., Govender T., Maguire G.E. et al. // J. Mol. Model. 2016. V. 22. P. 235. https://doi.org/10.1007/s00894-016-3084-z
  40. 40. Costa P., Pilli R., Pinheiro S. et al. The Chemistry of Carbonyl Compounds and Derivatives. London: RSC, 2022. 814 p.
  41. 41. Smith M.B. Organic Chemistry: An Acid-Base Approach. Boca Raton: CRC Press, 2023. 726 p.
  42. 42. Aue D.H., Webb H.M., Bowers M.T. // J. Am. Chem. Soc. 1976. V. 98. № 2. P. 311. https://doi.org/10.1021/ja00418a001
  43. 43. Radisic D., Xu S., Bowen Jr.K.H. // Chem. Phys. Lett. 2002. V. 354. № 1–2. P. 9. https://doi.org/10.1016/S0009-2614 (01)01470
  44. 44. Hunter E.P., Lias S.G. // JPCRD. 1998. V. 27. № 3. P. 413. https://doi.org/10.1063/1.556018
  45. 45. Kozhanova E.P., Samuilov Y.D., Samuilov A.Y. // Theor. Chem. Acc. 2023. V. 142. № 12. P. 132. https://doi.org/10.1007/s00214-023-03074-w
  46. 46. Samuilov A.Y., Balabanova F.B., Samuilov Y.D. // Comp. Theor. Chem. 2014. V. 1049. P. 7. https://doi.org/10.1016/j.comptc.2014.09.010
  47. 47. Samuilov A.Y., Balabanova F.B., Samuilov Y.D. // Comp. Theor. Chem. 2015. V. 1067. P. 33. https://doi.org/10.1016/j.comptc.2015.05.004
  48. 48. Díaz N., Suárez D., Sordo T.L. // Eur. J. Org. Chem. 2001. V. 2001. № 4. P. 793. https://doi.org/10.1002/1099–0690 (200102)2001:43.0.CO;2-Z
  49. 49. Ehlers J.E., Rondan N.G., Huynh L.K. et al. // Macromolecules. 2007. V. 40. № 12. P. 4370. https://doi.org/10.1021/ma070423m
  50. 50. Said R.B., Kolle J.M., Essalah K. et al. // ACS omega. 2020. V. 5. № 40. P. 26125. https://doi.org/10.1021/acsomega.0c03727
  51. 51. Alvaro C.E.S., Nudelman N.S. // Int. J. Chem. Kinet. 2010. V. 42. № 12. P. 735. https://doi.org/10.1002/kin.20523
  52. 52. Raspoet G., Nguyen M.T., Kelly S. et al. // J. Org. Chem. 1998. V. 63. № 26. P. 9669. https://doi.org/10.1021/jo980642t
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library