RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Physicochemical properties and functioning of negative electrodes with lead-based coatings as part of reserve chemical power sources

PII
S0044453725020211-1
DOI
10.31857/S0044453725020211
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 2
Pages
339-350
Abstract
Physicochemical properties of lead coating on steel substrates obtained by the galvanic method are studied by atomic force microscopy, scanning electron microscopy, X-ray diffraction phase analysis, voltammetry, and chronopotentiometry. The influence of the surface oxidized layer and through pores in the lead coating on the functioning of this coating as an anode of chemical power sources is studied. It is shown that at positive temperatures the process of anodic oxidation of the steel substrate can contribute to functioning of the anode at discharge. High discharge characteristics of lead-coated anodes without barrier layers on a steel substrate at temperatures from -50 to +50°C are confirmed by tests of pilot batches of reserve power sources of the Pb/HClO4/PbO2 system. Application of POS 63 tin-lead alloy on a copper substrate is shown to be promising for manufacturing anodes of chemical power sources.
Keywords
анод свинец сталь сплав олово-свинец хлорная кислота растровая электронная микроскопия атомно-силовая микроскопия рентгенофазовый анализ хронопотенциометрия вольтамперометрия химический источник тока разрядные кривые
Date of publication
13.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Wong C., Yang E., Yan X.-T., Gu D. // Syst. Sci. Control Eng. 2018. V. 6. № 1. P. 213. https://doi.org/10.1080/21642583.2018.1477634
  2. 2. Handbook of Batteries / Ed.D. Linden and T.B. Reddy. New York, Chicago, etc.: McGraw-Hill, 2002. 1453 p.
  3. 3. Bagotsky V.S., Skundin A.M., Volfkovich Yu.M. Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors. Hoboken, N.J.: John Willey & Sons, 2015. 400 p. https://doi.org/10.1002/9781118942857
  4. 4. Yoon S.-H., Son J.-T., Oh J.-S. // J. Power Sources. 2006. V. 162. № 2. P. 1421. https://doi.org/10.1016/j.jpowsour.2006.07.051
  5. 5. Lead is not dead: Three Ways that Lead Can Prove its Place in the Energy Transition. Wood Mackenzie, UK. Текст: электронный // www.woodmac.com: [сайт]. 2020. 16 июня. URL: woodmac.com/news/opinion/lead-is-not-dead (дата обращения: 29.03.2024).
  6. 6. Riegel B. Lead is not dead – It’s a Critical Foundation for Europe’s low Carbon Future. Hoppecke Batterien GmbH & Co. KG, BRD. Текст: электронный // chargethefutere.org: [сайт]. 2020. 19 окт. URL: https://chargethefutere.org/blog/lead-is-not-dead-its-a-critical-foundation-for-europes-low-carbon-future (дата обращения: 29.03.2024).
  7. 7. The world lead Factbook 2023. International Lead and Zinc Study Group, Portugal. Текст: электронный // www.ilzsg.org: [сайт]. 2023. URL: https://www.ilzsg.org/wp-content/uploads/SitePDFs/1_ILZSG%20World%20Lead%20Factbook%202023.pdf (дата обращения: 29.03.2024).
  8. 8. White J.C., Power W.H., McMurtrie R.L., Pierce Jr.R.T. // Trans. Electrochem. Soc. 1947. V. 91. № 1. P. 73. https://doi.org/10.1149/1.3071768
  9. 9. Brook P.A., Davies A.E. The Tin-Lead Dioxide Reserve Cell // J. Appl. Chem. 1956. V. 6. № 4. P. 174. https://doi.org/10.1002/jctb.5010060409
  10. 10. Schrodt J.P., Otting W.J., Schoegler J.O., Craig D.N. // Trans. Electrochem. Soc. 1946. V. 90. № 1. P. 405–417. https://doi.org/10.1149/1.3071755
  11. 11. Шпекина В.И., Савельева Е.А., Горбачева Е.Ю., Соловьева Н.Д. // Электрохимическая энергетика. 2014. Т. 14. № 4. С. 214. https://doi.org/10.18500/1608-4039-2014-14-4-214-217
  12. 12. Шпекина В.И. Разработка технологии электроосаждения диоксида свинца на различные подложки в ультразвуковом поле. Дис. … канд. техн. наук. Саратов, ФГБОУ ВО “Саратовский государственный технический университет имени Гагарина Ю.А.”. 2016. 136 с.
  13. 13. Щеглов П.А., Самсонов Д.А., Павленков А.Б. и др. // Электрохимия. 2023. Т. 59. № 12. С. 824. https://doi.org/10.31857/S0424857023120125 [Shcheglov P.A., Samsonov D.A., Pavlenkov A.B. et al. // Russ. J. Electrochem. 2023. V. 59. № 12. P. 1062. https://doi.org/10.1134/S1023193523120121]
  14. 14. Щеглов П.А., Самсонов Д.А., Павленков А.Б. и др. // Журн. физ. химии. 2023. Т. 97. № 12. С. 1783. https://doi.org/10.31857/S0044453723120269 [Shcheglov P.A., Samsonov D.A., Pavlenkov A.B. et al. // Russ. J. Phys. Chem. A. 2023. V. 97. № 12. P. 2836. https://doi.org/10.1134/S0036024423120269]
  15. 15. Shcheglov P.A., Samsonov D.A., Pavlenkov A.B. et al. // Chimica Techno Acta. 2024. V. 11. № 1. Article № 202411103. https://doi.org/10.15826/chimtech.2024.11.1.03
  16. 16. Shcheglov P.A., Samsonov D.A., Pavlenkov A.B. et al. // Russ. J. Phys. Chem. A. 2024. V. 98. № 6. P. 1322. https://doi.org/10.1134/S0036024424700328
  17. 17. Горбачев Н.В., Горбачева Е.Ю., Соловьева Н.Д., Краснов В.В. // Электрохимическая энергетика. 2011. Т. 11. № 3. С. 154. https://doi.org/10.18500/1608-4039-2011-11-3-154-157
  18. 18. Горбачев Н.В., Горбачева Е.Ю., Соловьева Н.Д. и др. // Вестн. Саратовского гос. техн. ун-та. 2011. № 4 (49). Вып. 1. С. 83.
  19. 19. Горбачев Н.В. Технология формирования анодных слоев электродов резервных источников тока с хлорной кислотой. Дис. … канд. техн. наук. Саратов: ФГБОУ ВО “Саратовский государственный технический университет имени Гагарина Ю.А.”, 2011. 127 с.
  20. 20. Справочник по электрохимии / Под ред. А.М. Сухотина. Л.: Химия, 1981. 488 с.
  21. 21. Judd M., Brindley K. Soldering in electronics assembly. 2nd ed. Elsevier, 1999. 369 p. https://doi.org/10.1016/B978-0-7506-3545-5.X5000-6
  22. 22. ГОСТ 9.305–84. Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Операции технологических процессов получения покрытий: межгосударственный стандарт: издание официальное. Москва: ИПК Издательство стандартов, 2003. [GOST 9.305–84. Unified system of corrosion and ageing protection. Metal and non-metal inorganic coatings. Technological process operations for coating production: interstate standard: official publication (in Russian). Moscow, 2003.]
  23. 23. ГОСТ 9.302–88. Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Методы контроля: межгосударственный стандарт: издание официальное. Москва: ИПК Изд-во стандартов, 2001. [GOST 9.302–88. Unified system of corrosion and ageing protection. Metal and non-metal inorganic coatings. Control methods: interstate standard: official publication (in Russian). Moscow, 2001.]
  24. 24. Pletcher D., Zhou H., Kear G. et al. // J. Power Sources. 2008. V. 180. № 1. P. 621. https://doi.org/10.1016/j.jpowsour.2008.02.024
  25. 25. Leygraf C., Wallinder I.O., Tidblad J., Graedel T. The Atmospheric Corrosion Chemistry of Lead / Atmospheric Corrosion. 2nd Edition. Hoboken NJ, John Wiley & Sons. 2016. Appendix G.P. 316. https://doi.org/10.1002/9781118762134
  26. 26. Graedel T.E. // J. Electrochem. Soc. 1994. V. 141. № 4. P. 922. https://doi.org/10.1149/1.2054858
  27. 27. Holleman A.F., Wiberg E. Inorganic Chemistry. San Diego, London, etc., Academic Press. 2001. P. 916.
  28. 28. Todd G., Parry E. // Nature. 1964. V. 202. № 4930. P. 386. https://doi.org/10.1038/202386a0
  29. 29. Howie R.A., Moser W. // Nature. 1968. V. 219. № 5152. P. 372. https://doi.org/10.1038/219372a0
  30. 30. Roberts A.C., Stirling J.A.R., Carpenter G.J.C. et al. // Mineral. Mag. 1995. V. 59. № 395. P. 305. https://doi.org/10.1180/minmag.1995.059.395.14
  31. 31. Siidra O.I., Jonsson E., Chukanov N.V. et al. // Eur. J. Mineral. 2018. V. 30. № 2. P. 383. https://doi.org/10.1127/ejm/2018/0030-2723
  32. 32. Olby J.K. // J. Inorg. Nucl. Chem. 1966. V. 28. № 11. P. 2507. https://doi.org/10.1016/0022-1902 (66)80373-1
  33. 33. Siidra O., Nekrasova D., Depmeier W. et al. // Acta Cryst. B. 2018. V. B74. № 2. P. 182. https://doi.org/10.1107/S2052520618000768
  34. 34. Кащеев В.Д., Кабанов Б.Н., Лейкис Д.И. // Докл. АН СССР. 1962. Т. 147. № 1. С. 143.
  35. 35. Кабанов Б.Н., Кащеев В.Д. // Докл. АН СССР. 1963. Т. 151. № 4. С. 883.
  36. 36. Séby F., Potin-Gautier M., Giffaut E. et al. // Geochim. Cosmochim. Acta. 2001. V. 65. № 18. P. 3041. https://doi.org/10.1016/S0016-7037 (01)00645-7
  37. 37. Gajda T., Sipos P., Gamsjäger H. // Monatsh. Chem. 2009. V. 140. P. 1293. https://doi.org/10.1007/s00706-009-0188-5
  38. 38. Gamsjäger H., Gajda T., Sangster J., Saxena S.K., Voigt W. Chemical Thermodynamics. V. 12: Chemical Thermodynamics of Tin / Ed.J. Perrone. Issy-les-Moulineaux, OECD Nuclear Energy Agency. 2012. 609 p.
  39. 39. ГОСТ Р 58593–2019. Источники тока химические. Термины и определения: Национальный стандарт Российской Федерации: издание официальное. Москва: Стандартинформ, 2019. [GOST R58593–2019. Primary and secondary cells and batteries. Vocabulary: national standard of the Russian Federation: official publication (in Russian). Moscow, 2019.]
  40. 40. Голембиовский В.С., Есиев Р.У., Колпащиков Ю.В. и др. Энергосодержащий источник тока, Патент RU2487313 (Россия). Заявл. 03.02.2012, опубл. 10.07.2013. [Golembiovskij V.S., Esiev R.U., Kolpashchikov Yu.V. et al. Energy-Containing Power Source, Patent RU2487313 (Russia), Applied 03.02.2012, published 10.07.2013]
  41. 41. Набоков Ю.А., Корченков И.А., Трофимов П.В., Павленков А.Б., Самсонов Д.А., Щеглов П.А. Энергосодержащий источник тока, Патент RU2822542 (Россия). Заявл. 18.07.2023, опубл. 09.07.2024. [Nabokov Yu.A., Korchenkov I.A., Trofimov P.V., Pavlenkov A.B., Samsonov D.A., Shcheglov P.A. Energy-containing power source, Patent RU2822542 (Russia). Applied 18.07.2023, published 09.07.2024.]
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library