RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Phase equilibria and thermodynamic properties of phases in the manganese methanesulfonate – methanesulfonic acid – water system: experiment and calculations

PII
S0044453725030019-1
DOI
10.31857/S0044453725030019
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 3
Pages
375-383
Abstract
The cross section of the phase diagram of the Mn(CH3SO3)2–CH3SO3H–H2O system at 298.15 K is obtained by the isothermal solubility method. The Mn(CH3SO3)2∙2H2O dihydrate is shown to be in equilibrium with solutions containing from 0 to 58 wt% acid. In this ternary system, the bulk properties of solutions at 298.15 K are obtained for a number of compositions, and in its subsystem Mn(CH3SO3)2–H2O they are obtained in the temperature range 288.15 K – 323.15 K. A semi-empirical Laliberté approach is used to describe the bulk properties. The water activities in the temperature range 288.15-323.15 K are calculated by the static method using the measurement results of the saturated vapor pressure. In the Mn(CH3SO3)2–CH3SO3H–H2 system, the possibility of estimating the solubility and activity of water using only the binary parameters of the Pitzer-Simonson-Clegg model for the liquid phase and the known solubility constant at 298.15 K is checked. It is shown that only binary parameters are insufficient for adequate prediction of solubility, it is necessary to take into account at least one parameter of ternary interaction.
Keywords
метансульфоновая кислота метансульфонат марганца модель Питцера–Симонсона–Клегга фазовые равновесия статический метод давления пара активность воды изотермическая растворимость
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Binnemans K., Jones P.T. // J. Sustain. Metall. 2023. V. 9. № 1. P. 26.
  2. 2. Kim J.-Y., Wu J., Kim E.-W., et al. // Mining, Metall. Explor. 2023. V. 40. № 5. P. 1455.
  3. 3. Chaudhary V. // Sep. Purif. Rev. 2024. V. 53. № 1. P. 82.
  4. 4. Gul E., Gokcen D. // ECS J. Solid State Sci. Technol. 2020. V. 9. № 5. P. 054004.
  5. 5. Sniekers J., Malaquias J.C., Van Meervelt L., et al. // Dalt. Trans. 2017. V. 46 № 8. P. 2497.
  6. 6. Белова Е.В., Капелюшников А.С., Восков А.Л. // Журн. физ. химии. 2023. T. 97. № 7. C. 925.
  7. 7. Belova E V., Shakirova J.D., Lyssenko K.A., et al. // J. Chem. Thermodyn. 2023. V. 182. P. 107049.
  8. 8. Белова Е.В., Шакирова Ю.Д., Епишев В.В. // Журн. физ. химии. 2022. T. 96. № 7. C. 1040.
  9. 9. Laliberté M., Cooper W.E. // J. Chem. Eng. Data. 2004. V. 49. № 5. P. 1141.
  10. 10. Belova E.V., Kapelushnikov A.S., Novikov A A., et al. // J. Chem. Eng. Data. 2024. V. 69. № 3. P. 1347.
  11. 11. Schott H. // J. Chem. Eng. Data. 1961. V. 6. № 3. P. 324.
  12. 12. Clegg S.L., Pitzer K.S., Brimblecombe P. // J. Phys. Chem. 1992. V. 96. № 23. P. 9470.
  13. 13. Taylor D. // J. Chem. Soc. 1952. P. 2370.
  14. 14. Charykova M.V., Krivovichev V.G., Depmeier W. // Geol. Ore Depos. 2010. V. 52. № 8. P. 701.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library