RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Characteristic parameters of unsaturated fatty acid residues upon liquid chromatography of lipids in media with silver ions

PII
S0044453725030081-1
DOI
10.31857/S0044453725030081
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 3
Pages
433-441
Abstract
The results of liquid chromatography of a complex mixture of unsaturated lipid molecules as the basis of the hydrophobic matrix of biomembranes are summarized. The data of relative retention of such lipids, which included residues of the most important fatty acids, allowed calculating the most characteristic general parameters that satisfactorily determine their behavior when silver salt is introduced into a planar or column liquid chromatographic system in order to drastically increase the selectivity of separation of unsaturated lipid molecules from each other. A variant of quantitative estimation of the relationship between the level of selectivity of separation of particular molecules of natural lipids from each other and the proposed parameters of their constituent fatty acid residues, which are calculated on the basis of variations in the chemical potential of such molecules when silver appears in this system, is proposed.
Keywords
ионы серебра жидкостная хроматография ненасыщенные липиды
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Zhang C.-W., Wang C.-Z., Tao R., Ye J.-Z. // J. Chromatogr. A. 2019. V. 1590. P. 58. DOI: 10.1016/j.chroma.2019.01.047
  2. 2. Lu H., Zhu H., Dong H., et al. // J. Chromatogr. A. 2019. V. 1613. № 460660. P. 1–7 DOI: 10.1016/j.chroma.2019.460660
  3. 3. Huang S., Qui R., Fang Z., et al. // Anal. Chem. 2022. V. 94. P. 13710. DOI: 10.1021/acs.analchem.2c01627
  4. 4. Ullah Q. // J. Planar Chromatogr. Modern TLC. 2020. V. 33. P. 329. DOI: 10.1007/s00764-020-00048-7
  5. 5. Yoon J., Choi E., Min K. // J. Phys. Chem. A. 2021. V. 125. № 46. P. 10103. DOI: 10.1021/acs.jpca.1c05292
  6. 6. Hamieh T. // J. Chromatogr. Sci. 2022. V. 60. № 2. P. 126. DOI: 10.1093/chromsci/bmab066
  7. 7. Petersen M.L., Hirsch J. // J. Lipid. Res. 1959. V. 1. P. 152.
  8. 8. Ren Q.H., Rybicki M., Sauer J. // J. Phys. Chem. C. 2020. V. 124. № 18. P. 10067. DOI: 10.1021/acs.jpcc.0c003061
  9. 9. Vysotsky Y.B., Kartashynska E.S., Vollhardt D., et al. // J. Phys. Chem. C. 2020. V. 124. № 25. P. 13809. DOI: 10.1021/acs.jpcc.0c03785
  10. 10. Leasor C., Chen K.-H., Closson T., Li Z. // J. Phys. Chem. C. 2019. V. 123. № 22. P. 13600. DOI: 10.1021/acs.jpcc.9b01705
  11. 11. Nikolova-Damyanova B., Christie W.W., Herslöf B.G. // J. Chromatogr. A. 1993. V. 653. № 1. P. 15.
  12. 12. Vahmani P., Rolland D.C., Gzyl K.E., Dugan M.E.R. // Lipids. 2016. V. 51. № 12. P. 1427. DOI: 10.1007/s11745-016-4207-0
  13. 13. Dabrowska M., Sokalska K., Gumulka P., et al. // JPC-J. Planar Chromatogr. –Modern TLC. 2019. V. 32. № 1. P. 13. DOI: 10.1556/1006.2019.32.1.2
  14. 14. Пчелкин В.П., Верещагин А.Г. // Докл. АН СССР. 1991. Т. 318. № 2. С. 473.
  15. 15. Pchelkin V.P., Vereshchagin A.G. // J. Chromatogr. 1991. V. 538. № 2. P. 373.
  16. 16. Pchelkin V.P., Vereshchagin A.G. // J. Chromatogr. 1992. V. 603. P. 213.
  17. 17. Pchelkin V.P. // Russ. J. Phys. Chem. 2000. V. 74. P. 625.
  18. 18. Пчёлкин В.П. // Журн. физ. химии. 2003. Т. 77. № 9. С. 1652.
  19. 19. Пчёлкин В.П. // Журн. физ. химии. 2016. V. 90. № 9. P. 409. DOI: 10.6878/S1004445371690235
  20. 20. Pchelkin V.P. // J. Anal. Chem. 2020. V. 75. № 5. P. 615. DOI: 10.1134/S1061934820050159
  21. 21. Pchelkin V.P. // Current Chromatogr. 2022. V. 9. № 2. P. 1. DOI: 10.2174/ 2213240609666220120120113938
  22. 22. Mahato P., Mandal K., Agrawai S., et al. // J. Phys. Chem. Lett. 2024. V. 15. № 2. P. 461. DOI: 10.1021/acs.lett.3c03188
  23. 23. Bhowmick S., Maisser A., Suleimanov Y.V., et al. // J. Phys. Chem. A. 2022. V. 128. № 37. P. 6376. DOI: 10.1021/acs.jpca.2c02809
  24. 24. Andryushechkin B.V., Pavlova T.V., Shevlyuga V.M. // Phys. Chem. Chem. Phys. 2024. V. 26. № 2. P. 1322. DOI: 10.1039/D3CP04962K
  25. 25. Yasumura S., Kato T., Toyao T., et al. // Phys. Chem. Chem. Phys. 2023. V. 25. P. 8524. DOI: 10.1039/d2cp04761f
  26. 26. Gao H., Bi S., Chai J., et al. // J. Chrom. A. 2024. V. 1714. № 464579. P. 1. DOI: 10.1016/j.chroma.2023.464579
  27. 27. Arroyave J.M., Ambrusi R.E., Pronsato M.E., et al. // J. Phys. Chem. B. 2020. V. 124. № 12. P. 2425. DOI: 10.1021/acs.jpcb.9b10430
  28. 28. Bigi F., Cera G., Maggi R., et al. // J. Phys. Chem. A. 2021. V. 125. № 46. P. 10035. DOI: 10.1021/acs.jpca.1c07253
  29. 29. Jayalatharachchi V., MacLeod J., Lipton-Duffin J. // J. Phys. Chem. C. 2021. V. 125. № 26. P. 14326. DOI: 10.1021/acs.jpcc.1c02581
  30. 30. Krzykawska A., Szwed M., Ossowski J., Cyganik P. // J. Phys. Chem. C. 2018. V. 122. № 1. P. 919. DOI: 10.1021/acs.jpcc.7b10806
  31. 31. Du Z., Ding P., Tai X., et al. // Langmuir. 2018. V. 34. № 23. P. 6922. DOI: 10.1021/acs.langmuir.8b00640
  32. 32. Rathnakumar S., Bhaskar S., Sivaramakrishnan V., et al. // Anal. Chem. 2024. V. 96. № 10. P. 4005. DOI: 1021/acs.analchem.3c01441
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library