RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Kinetic Analysis of Formation of Magnesia Spinel by Thermal Analysis

PII
S0044453725050035-1
DOI
10.31857/S0044453725050035
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 5
Pages
702-708
Abstract
Thermal analysis of mixtures of various alumina precursors (powders of fused corundum, smelter-grade alumina GK and non-smelter-grade alumina G-00, combustion product of xerogel from aluminum nitrate and citric acid) with periclase at different heating rates is performed. By analyzing the shape and position of exothermic peaks, which corresponded to the formation of magnesia spinel MgAlO, the values of the Avrami coefficient and the effective values of the activation energy are determined according to Kissinger, Augis-Bennett, and Ozawa equations. The effect of mechanoactivation (MA) of the reactants is analyzed. Co-treatment of periclase and corundum-containing reagents allowed reducing the activation energy of the reaction by 15–20%. Pre-treatment of one of the components of the mixture is most appropriate for periclase since it allowed reducing E by ~14%, whereas MA of corundum alone reduced this characteristic only by ~9%. Using the combustion product of xerogel of alumina-oxide composition in spinel synthesis is very effective since it accelerated the process by reducing E by ~11% even without MA. The values of the Avrami constant are found to be in the range 0.57–0.76, which corresponds to the mechanism of nucleation and crystal growth.
Keywords
MgAlO твердофазный синтез термический анализ механоактивация энергия активации константа Аврами
Date of publication
31.10.2024
Year of publication
2024
Number of purchasers
0
Views
7

References

  1. 1. Obradović N., Filipović S., Fahrenholtz W.G., et al. // Science of Sintering. 2023. V. 55. № 1. P. 1. https://doi.org/10.2298/SOS2301001O
  2. 2. Chen Z., Yan W., L G.i, et al. // J.of the European Ceramic Society. 2024. V. 44. Is. 2. P. 1070. https://doi.org/10.1016/j.jeurceramsoc.2023.10.004
  3. 3. Gajdowski C., D’Elia R., Faderl N., et al. // Ceram. Int. 2022. V. 48. P. 18199. DOI: 10.1016/j.ceramint.2022.03.079
  4. 4. Baruah B., Bhattacharyya S., Sarkar R. // Applied Ceramic Technology. 2023. V. 20. Is. 3. P. 1331. https://doi.org/10.1111/ijac.14309
  5. 5. Zegadi A., Kolli M., Hamidouche M., Fantozzi G. // Ceramics International. 2018. V. 44. P. 18828. https://doi.org/10.1016/j.ceramint.2018.07.117
  6. 6. Косенко Н.Ф. Смирнова М.А. // Огнеупоры и техническая керамика. 2011. № 9. С. 3.
  7. 7. Tran A., Tran V., Nguyet N.T.M., et al. // ACS Omega. 2023. V. 8. P. 36253. https://doi.org/10.1021/acsomega.3c04782
  8. 8. Liu J., Lv X., Li J., et al. // Science of Sintering. 2016. V. 48. P. 353. http://dx.doi.org/10.2298/SOS1603353L
  9. 9. Obradović N., Fahrenholtz W.G., Filipović S., et al. // J. of Thermal Analysis and Calorimetry. 2020. V. 140. P. 95. https://doi.org/10.1007/s10973-019-08846-w
  10. 10. Филатова Н.В., Косенко Н.Ф., Артюшин А.С. и др. // Росс. хим. журн. 2024. Т. 68. № 2.
  11. 11. Filatova N.V., Kosenko N.F., Denisova O.P. // Russ. J. of Physical Chemistry A. 2022. V. 96. № 6. P. 1147. http://dx.doi.org/10.1134/S0036024422060085
  12. 12. Gotor F.J., Criado J.M., Malek J., Koga N. // J. Phys. Chem. A. 2000. V. 104. Is. 46. P. 10777. https://doi.org/10.1021/jp0022205
  13. 13. Sinhamahapatra S., Shamim M., Tripathi H.S., et al. // Ceramics International. 2016. V. 42. P. 9204. http://dx.doi.org/10.1016/j.ceramint.2016.03.017
  14. 14. Filatova N.V., Kosenko N.F., Badanov M.A. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. № 11. P. 97. https://doi.org/10.6060/ivkkt.20216411.6478
  15. 15. Han Y., Li H. // Case Studies in Thermal Engineering. 2023. V. 45. Art. 102993. https://doi.org/10.1016/j.csite.2023.102993
  16. 16. Kissinger H.E. // J. Res. Natl. Bur. Stand. 1956. V. 56. P. 217.
  17. 17. Augis J.A., Bennett J.E. // J. Therm. Anal. 1978. V. 13. P. 283.
  18. 18. Ozawa T. // Bull. Chem. Soc. Jpn. 1965. V. 35. P. 1881.
  19. 19. Watson E.B., Price J.D. // Geochim. Cosmochim. Acta. 2002 V. 66. Is. 12. P. 2123. https://doi.org/10.1016/S0016-7037 (02)00827-X
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library