- PII
- S0044453725050078-1
- DOI
- 10.31857/S0044453725050078
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 99 / Issue number 5
- Pages
- 732-739
- Abstract
- The protolytic properties of a number of aliphatic amino acids, viz. serine (Ser), cysteine (Cys), glycine (Gly), alanine (Ala), valine (Val), leucine (Leu), and isoleucine (Ile) in aqueous solutions at T = 298.2 K and I = 0.1 mol/L NaNO are studied by pH monitoring. Using the calculated ionization constants of amino acids and the equation allowing one to quantify the inductive effect in the aliphatic series (the Taft equation), the substituent constant σ* is calculated, with its values showing a positive correlation with the ionization constants of amino acids (pK) (R = 0.9561 and R = 0.8542). The results show that the acidity of the studied amino acids decreases as follows Cys > Ser > Gly > Leu > Ala > Ile > Val. The acid-base properties of amino acids are found to change depending on the inductive effect (the radical constant σ*). Among the studied amino acids, Cys exhibits the highest acidity and is considered to be the weakest base.
- Keywords
- pH-метр алифатические аминокислоты константа ионизации влияние индуктивного эффекта уравнение Тафта
- Date of publication
- 05.11.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 7
References
- 1. Akram M., Asif H.M., Uzair M., et al. // J. of Medicinal Plants Research. 2011. V. 5. № 17. P. 3997.
- 2. Valdemir L., Zélia M. da Costa L., Danillo V., et al. // J. of Molecular Liquids. 2020. P. 319. https://doi.org/10.1016/j.molliq.2020.114109
- 3. Rand R.P. // Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2004. V. 359. P. 1277. https://doi.org/10.1098/rstb.2004.1504
- 4. Adam C.L., Gordon M.C. // J. Chem. Inf. Model. 2009. V. 49. P. 2013.
- 5. Makowska J., Baginska K., Liwo A., et al. // Peptide Science. 2008. V. 90. № 5. https://doi.org/10.1002/bip.21046
- 6. Somaryn M.S., Gharib F. // J. of Applied Chemical Research. 2014. V. 8. № 3. P. 17.
- 7. Subirats X.E., Rosés F.M., Bosch E., et al. // Molecular Sciences and Chemical Engineering, Elsevier 2015. https://doi.org/10.1016/B978-0-12-409547-2.11559-8
- 8. Зеленин О.Ю., Кочергина Л.А. // Журн. общ. химии. 2004. Т. 74. № 2. С. 230–234.
- 9. Bretti C., Giuffrè O., Lando G., et al. // SpringerPlus. 2016. 5:928. https://doi.org/10.1186/s40064-016-2568-8
- 10. Seza Bastug A., Seda Goz E., Talman Y., et al. // J. of Coordination Chemistry. 2011. V. 64. № 2. P. 281. http://dx.doi.org/10.1080/00958972.2010.541454
- 11. Clarke R.G.F., Collins C.M., Roberts J.C., et al. // Geochimicaet Cosmochimica Acta. 2004. V. 69. № 12. P. 3029. https://doi.org/10.1016/j.gca.2004.11.028
- 12. Вандышев В.Н., Леденков С.Ф. // Журн. физ. химии. 2009. Т. 83. № 12. С. 2384.
- 13. Chernyshova О.S., Boichenko A.P., Abdulrahman H., et al. // J. of Molecular Liquids. 2013. Р. 182. http://dx.doi.org/10.1016/j.molliq.2013.03.003
- 14. Sharma V.K., Casteran F., Millero F.J., et al. // J. of Solution Chemistry. 2002. V. 31. № 10. P. 783. https://doi.org/10.1023/a:1021389125799
- 15. Zhu M., Yang D., Ye R., et al. // Catal. Sci. Technol. 2019. https://doi.org/10.1039/C9CY00102F.
- 16. Chowdhury S., Mandal P., Hossain A., et al. // J. Chem. Eng. Data. 2019. V. 64. № 10. P. 4286. https://doi.org/10.1021/acs.jced.9b00363
- 17. Glinskia J., Chavepeyerb G., Platten J. // Biophysical Chemistry 2000. V. 84. P. 99. https://doi.org/10.1016/S0301-4622 (99)00150-7
- 18. Горичев И.Г., Атанасян Т.К., Мирзоян П.И. Расчет констант кислотно-основных свойств наночастиц оксидных суспензий с помощью программ Mathсad. Учебное пособие. Москва. 2014. 57 с.
- 19. Arcis H., Ferguson J.P., Cox J.S., et al. // Cite as: J. Phys. Chem. Ref. 2020. V. 49. https://doi.org/10.1063/1.5127662
- 20. Кобилова Н.Х., Бобилова Ч.Х., Жабборова Д.Р. // Международный академический вестник. 2019. № 1 (33). С. 89.
- 21. Самадов А.С., Хакимов Дж.Н., Степнова А.Ф. // Журн. физ. химии. 2023. Т. 97. № 4. С. 512. https://doi.org/10.31857/S004445372304026X
- 22. Самадов А.С., Миронов И.В.,. Горичев И.Г. и др. // Журн. общ. химии. 2020. Т. 90. № 11. С. 1738. DOI: 10.31857/S0044460X20110141
- 23. Самадов А.С., Степнова А.Ф., Файзуллозода Э.Ф. и др. // Вecтн. Моск. ун-та. Сер. 2. Химия. 2023. Т. 64. № 3.
- 24. Kochergina L.A., Volkov A.V., Khokhlova E.A., et al. // Rus. J. of Physical Chemistry. 2011. V. 85. № 5. P. 970.
- 25. Martell A.E., Smith R.M. Aminocarboxylic Acids. Critical Stability Constants. 1982. P. 1. https://doi.org/10.1007/978-1-4615-6761-5_1
- 26. Zelenin O. Yu., Kochergina L.A. // Russian Journal of general chemistry. 2004. V. 74. № 2. P. 259
- 27. Sovago I., Kiss T., Gergely A. // Pure & App. Chem. 1993. V. 65. № 5. P. 1029. https://doi.org/10.1351/pac199365051029.
- 28. Berthon G. // Pure & App. Chem. 1995. V. 67. № 7. P. 1117. https://doi.org/10.1351/pac199567071117
- 29. Popoca J.L., Thoke H.S., Stock R.P., et al. // Biochemistry and Biophysics Reports. 2020. V. 24. № 100802. https://doi.org/10.1016/j.bbrep.2020.100802
- 30. Cherkasov A.R., Galkin V.I., Cherkasov R.A. // Rus. Chemical Reviews. 1996. V. 65. № 8. P. 641. https://doi.org/10.1070/RC1996v065n08ABEH000227
- 31. Kingsbury C.A. // Faculty Publications Chemistry Department. 2019. № 155. http://digitalcommons.unl.edu/chemfacpub/155
- 32. Widing H.F., Levitt L.S. // Z. Naturforsch. 1979. V. 34b. P. 321. https://doi.org/10.1515/znb1979-0236.