ОХНМЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

СОРБЦИОННО-ДЕСОРБЦИОННЫЕ СВОЙСТВА ФОСФАТА ТИТАНА К КАТИОНАМ ТЯЖЕЛЫХ МЕТАЛЛОВ

Код статьи
S0044453725050098-1
DOI
10.31857/S0044453725050098
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 99 / Номер выпуска 5
Страницы
752-758
Аннотация
Исследовано сорбционно/десорбционное поведение двухвалентных ионов (, , , ) на аморфном фосфате титана. Показано, что сорбционно/десорбционное равновесие во многом определяется сольватированным состоянием катионов тяжелых металлов, построены ряды селективности. Независимо от степени насыщения сорбента катионами исследуемых металлов степень десорбции во всех случаях превышает 99.9%. Установлено, что при многоцикличном применении сорбента происходит снижение эффективности процессов сорбции/десорбции в результате его дегидратации вследствие гидролиза сорбента, которая составляет 2.6×10 мг·г·ч. Показана эффективность сорбции/десорбции исследованных ионов из мультикомпонентных растворов.
Ключевые слова
сорбенты фосфат титана сорбция десорбция катионы тяжелых металлов равновесия
Дата публикации
07.06.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
7

Библиография

  1. 1. Barrios-Estrada C., de Jesús Rostro-Alanis M., Muñoz-Gutiérrez B.D. et al. // Sci. Total Environ. 2018. V. 612. P. 1516. https://doi.org/10.1016/j.scitotenv.2017.09.013
  2. 2. Renge V.C., Khedkar S.V., Pandey Shraddha V. // Sci. Rev. Chem. Commun. 2012. V. 2. № 4. P. 580.
  3. 3. Muya F.N., Ward M., Sunday C.E., et al. // Water Sci. Technol. 2015. V. 73. № 5. P. wst2015567. https://doi.org/10.2166/wst.2015.567
  4. 4. Fu F., Wang Q. // J. Environ. Manage. 2011. V. 92. № 3. P. 407. https://doi.org/10.1016/j.jenvman.2010.11.011
  5. 5. Trublet M., Maslova M.V., Rusanova D., Antzutkin O.N. // RSC Adv. 2017. V. 7. № 4. P. 1989. https://doi.org/10.1039/C6RA25410A
  6. 6. Maslova M., Ivanenko V., Yanicheva N., Gerasimova L. // J. Water Process Eng. 2020. V. 35. P. 101233. https://doi.org/10.1016/j.jwpe.2020.101233
  7. 7. Trublet M., Maslova M.V., Rusanova D., Antzutkin O.N. // Mater. Chem. Phys. 2016. V. 183. P. 467. https://doi.org/10.1016/j.matchemphys.2016.09.002
  8. 8. Aşçı Y., Nurbaş M., Sağ Açıkel Y. // J. Environ. Manage. 2010. V. 91. № 3. P. 724. https://doi.org/10.1016/j.jenvman.2009.09.036
  9. 9. Temkin M., Pyzhev V. // Acta Physicochim. URSS. 1940. V. 12. P. 217.
  10. 10. Giles C.H., MacEwan T.H., Nakhwa S.N., Smith D. // J. Chem. Soc. 1960. V. 846. P. 3973.
  11. 11. Haynes W.M. Handbook of Chemistry and Physics. 97-th Edition. CRC Press, Taylor & Francis Group, 2017. 2643 p.
  12. 12. Шарыгин Л.М., Калягина М.Л., Боровков С.И. // Журн. прикл. химии. 2005. Т. 78. № 2. С. 229.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека