RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

THERMAL DECOMPOSITION OF COPPER OXALATE AND POTASSIUM OXALATOCUPRATE ACCORDING TO XPS DATA

PII
S0044453725050156-1
DOI
10.31857/S0044453725050156
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 5
Pages
800-812
Abstract
Thermal decomposition processes in the range from room temperature to 400°C of copper(II) oxalate CuCO·½HO and potassium oxalate cuprate(II) KCu(CO)·2HO in vacuum at the residual pressure 10 mm Hg with XPS and Auger spectra recorded are studied. An X-ray photoelectron spectrometer with a magnetic energy analyzer is used. The analysis of XPS and Auger spectroscopy data shows that thermal decomposition of CuCO·½HO involves the stages of detachment of crystallization water (150–265°C), CO (265–285°C) with an unstable intermediate product formed and decomposed at 285°C with the metallic copper residue formed with admixture of 11–13 mol. % of copper(I) oxide. Thermal decomposition of KCu(CO)·2HO involves the stages of elimination of crystallization water (85–120°C) and decomposition of the obtained anhydrous oxalate with elimination of CO and CO (250–290°C).
Keywords
оксалат меди(II) оксалатокупрат(II) калия термическое разложение РФЭС
Date of publication
15.11.2024
Year of publication
2024
Number of purchasers
0
Views
11

References

  1. 1. Clarke R.M., Williams I.R. // Mineralogical Magazine. 1986. V. 50. P. 295. https://doi.org/10.1180/minmag.1986.050.356.15
  2. 2. Chisholm J.E., Jones G.C., Purvis O.W. // Mineralogical Magazine. 1987. V. 51. P. 715. https://doi.org/10.1180/minmag.1987.051.363.12
  3. 3. Kirschner S., Mclean J.A., Meerman G. Potassium Dioxalatocuprate(II) 2-Hydrate. In the Book: Inorganic Syntheses, 2007, 1–2. https://doi.org/10.1002/9780470132371.ch1
  4. 4. Ren W.-X., Li P.-J., Geng Y., Li X.-J. // J. Hazardous Materials. 2009. V. 167. P. 164. https://doi.org/10.1016/j.jhazmat.2008.12.104
  5. 5. Dollimore D. // Thermochimica Acta. 1987. V. 117. P. 331. https://doi.org/10.1016/0040-6031 (87)88127-3
  6. 6. Salavati-Niasari M., Davar F., Mir N. // Polyhedron. 2008. V. 27. № 17. P. 3514. https://doi.org/10.1016/j.poly.2008.08.02
  7. 7. Liujin L. Method for preparing ultra-fine copper powder: Pat. 104475748 of China, 2015.
  8. 8. Lamprecht E., Watkins G.M., Brown M.E. // Thermochim. Acta. 2006. V. 446. P. 91. https://doi.org/10.1016/j.tca.2006.03.008
  9. 9. Mohamed M.A., Galwey A.K. // Thermochimica Acta. 1993. V. 217. P. 263. https://doi.org/10.1016/0040-6031 (93)85115-p
  10. 10. Donkova B., Mehandjiev D. // J. of Materials Science. 2005. V. 40. № 15. P. 3881. https://doi.org/10.1007/s10853-005-0487-0
  11. 11. Dubicki L., Harris C.M., Kokot E., Martin L. // Inorg. Chem. 1966. V. 5. P. 93. https://doi.org/10.1021/ic50035a023
  12. 12. Schmittler H. // Monatsberichte der Deutsche Akad. Wiss. Berlin. 1968. V. 10. P. 581.
  13. 13. Fichtner-Schmittler H. // Kristall und Technik. 1979. V. 14. P. 1079. https://doi.org/10.1002/crat.19790140908
  14. 14. Christensen A.N., Lebech B., Andersen N.H., Grivel ­J.-C. // Dalton Trans. 2014. V. 43. P. 16754. https://doi.org/10.1039/c4dt01689k
  15. 15. Udupa M.R. // Thermochimica Acta. 1982. V. 55. № 1. P. 117. https://doi.org/10.1016/0040-6031 (82)87013-5
  16. 16. Sarada K., Muraleedharan K. // J. of Thermal Analysis and Calorimetry. 2015. V. 123. № 1. P. 643. https://doi.org/10.1007/s10973-015-4988-z
  17. 17. Kornyakov I.V., Gurzhiy V.V., Kuz’mina M.A., et al. // Int. J. Mol. Sci. 2023. V. 24. Article Number 6786. https://doi.org/10.3390/ijms24076786
  18. 18. Chenakin S.P., Szukiewicz R., Barbosa R., Kruse N. // J. Elec. Spec. Rel. Phenom. 2016. V. 209. P. 66. https://doi.org/10.1016/j.elspec.2016.04.001
  19. 19. Rückriem K., Grotheer S., Vieker H., et al. // Beilstein J. Nanotech. 2016. V. 7. P. 852. https://doi.org/10.3762/bjnano.7.77
  20. 20. Chenakin S., Kruse N. // Appl. Surf. Sci. 2020. V. 515. Article Number 146041. https://doi.org/10.1016/j.apsusc.2020.146041
  21. 21. Chenakin S., Kruse N. // J. Phys. Chem. C. 2019. V. 123. № 51. P. 30926. https://doi.org/10.1021/acs.jpcc.9b07879
  22. 22. Viswamitra M.A. // Zeitschrift für Kristallographie. 1962. V. 117. P. 437. https://doi.org/10.1524/zkri.1962.117.5-6.437
  23. 23. Jeter D.Y., Hatfield W.E. // Inorg. Chim. Acta. 1972. V. 6. P. 523. https://doi.org/10.1016/s0020-1693 (00)91850-4
  24. 24. Zhang B., Zhang Y., Zhang J., et al. // CrystEngComm. 2016. V. 18. № 27. P. 5062. https://doi.org/10.1039/c6ce00786d
  25. 25. Darley J.R., Hoppe J.I. // J. Chem. Educ. 1972. V. 49. № 5. P. 365. https://doi.org/10.1021/ed049p365
  26. 26. Jun L., Feng-Xing Z., Yan-Wei R., et al. // Thermochim. Acta. 2003. V. 406. № 1–2. P. 77. https://doi.org/10.1016/s0040-6031 (03)00221-1
  27. 27. Tanaka K. // J. Inorg. and Nuclear Chem. 1981. V. 43. № 11. P. 2999. https://doi.org/10.1016/0022-1902 (81)80662-8
  28. 28. Rahimi-Nasrabadi M., Pourmortazavi S.M., Davoudi-Dehaghani A.A., et al. // CrystEngComm. 2013. V. 15. № 20. P. 4077. https://doi.org/10.1039/c3ce26930b
  29. 29. Edwards H.G.M., Farwell D.W., Rose S.J., Smith D.N. // J. Mol. Struc. 1991. V. 249. № 2–4. P. 233. https://doi.org/10.1016/0022-2860 (91)85070-j
  30. 30. Trapeznikov V.A., Shabanova I.N., Kholzakov A.V., Ponomaryov A.G. // J. Elec. Spec. Rel. Phenom. 2004. V. 137–140. P. 383. https://doi.org/10.1016/j.elspec.2004.02.115
  31. 31. Wojdyr M. // J. Appl. Cryst. 2010. V. 43. № 5. P. 1126. https://doi.org/10.1107/S0021889810030499
  32. 32. Biesinger M.C. // Surf. Interf. Anal. 2017. V. 49. № 13. P. 1325. https://doi.org/10.1002/sia.6239
  33. 33. Ganguly A., Sharma S., Papakonstantinou P., Hamilton J. // J. Phys. Chem. C. 2011. V. 115. № 34. P. 17009. https://doi.org/10.1021/jp203741y
  34. 34. Edwards D. // Inorg. Chim. Acta. 1976. V. 18. P. 65. https://doi.org/10.1016/s0020-1693 (00)95586-5
  35. 35. Rudd J.A., Jones D.R., Dunnill C.W., Andreoli E. // Surf. Sci. Spec. 2019. V. 26. № 1. Article Number 014013. https://doi.org/10.1116/1.5091615
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library