- PII
- S0044453725060049-1
- DOI
- 10.31857/S0044453725060049
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 99 / Issue number 6
- Pages
- 853-865
- Abstract
- Possible reaction pathways of aminolysis of succinic anhydride by benzocaine — concerted and two-step — have been investigated by the density functional theory method (level ωB97M—V/ma-def2-QZVPP//r2SCAN-3c). For each mechanism three variants are considered: without catalysis, self-catalysis by the reagent molecule (benzocaine) and autocatalysis by the product (succinamide). Thermodynamic and activation parameters of all elementary stages in the gas phase are calculated. It is shown that different mechanisms are involved in the course of the reaction: at early stages, both concerted and two-stage pathways of self-catalysis can be realized with equal probability; as the product is formed, the preferred route of reaction becomes stage autocatalysis with the limiting first stage.
- Keywords
- механизм аминолиз бензокаин янтарный ангидрид расчет DFT (ωВ97M—V/ma-def2-QZVPP//r²SCAN-3c)
- Date of publication
- 29.11.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 13
References
- 1. Fantozzi N., Volle J.-N., Porcheddu A. et al. // Chem. Soc. Rev. 2023. V. 52. P. 6680. https://doi.org/10.1039/d2cs00997h
- 2. Brown D.G., Boström J. // J. Med. Chem. 2016. V. 59. № 10. P. 4443. https://doi.org/10.1021/acs.jmedchem.5b01409
- 3. Козьминых В.О. // Хим.-фарм. журн. 2006. Т. 40. № 1. С. 9.
- 4. Patil M.M., Rajput S.S. // Int. J. Pharm. and Pharm. Sci. 2014. V. 6. № 11. P. 8. https://journals.imovareacademics.in/index.php/ijpps/article/view/2715
- 5. Шахмарданова С.А., Гулевская О.Н., Хананашвили Я.А. и др. // Журн. фундам. мед. и биол. 2016. № 3. С. 16.
- 6. Колотова Н.В., Чащина С.В. // Вопр. биол., мед. и фармацевт. химии. 2020. Т. 23. № 7. С. 9.
- 7. Жакина Л.Х., Курапова М.Ю., Газалиев А.М., Нуркенов О.Л. // Журн. общ. хим. 2008. Т. 78. Вып. 6. С. 1026.
- 8. Srivastava R., Tiwari D.K., Dutta P.K. // Int. J. Biol. Macromol. 2011. V. 49. P. 863. https://doi.org/10.1016/j.ijbiomac.2011.07.015
- 9. Савелова В.А., Олейник Н.М. Механизмы действия органических катализаторов: бифункциональный и внутримолекулярный катализ. Киев: Наукова думка, 1990. 296 с.
- 10. Соломин В.А., Кардаш И.Е., Сиасовский Ю.С. и др. // Докл. АН СССР. 1977. Т. 236. № 1. С. 139.
- 11. Калиниш К.К. // Изв. АН СССР. 1988. Т. 37. № 9. С. 1978. [Kalnini’sh, K.K. // Rus. Chem. Bull. 1988. V. 37. № 9. P. 1768. https://doi.org/10.1007/BF00962484]
- 12. Садовников А.Н. // Изв. вузов. Химия и хим. технология. 2007. Т. 50. № 5. С. 3. [Sadovnikov A.I. // Rus. J. Chem. Tech. 2007. V. 50. № 5. P. 3.]
- 13. Hipkin J., Satchell D.P.N. // J. Chem. Soc. B. 1966. P. 345. https://doi.org/10.1039/129660000345
- 14. Левина М.А., Крашенинников В.Г., Забалов М.В., Тигер Р.П. // Высокомолекуляр. соединения. Сер. Б. 2014. Т. 56. № 2. С. 152.
- 15. Tyurina Т.G., Kryuk Т.V., Kudryavtsevа Т.А. // J. Phys. Conf. Ser. 1658. 2020. P. 012063. https://doi.org/10.1088/1742-6596/1658/1/012063
- 16. Тюрина Т.Г., Крюк Т.В. // ЖПХ. 2019. Т. 92. № 3. С. 306. [Тюрина Т.Г., Крюк Г.У. // Russ. J. Appl. Chem. 2019. V. 92. № 3. P. 351. https://doi.org/10.1134/S1070427219030054]
- 17. Kruger H.G. // J. Mol. Struct.: THEOCHEM 2002. V. 577. № 2–3. P. 281. https://doi.org/10.1016/S0166-1280 (01)00672-8
- 18. Ilieva S., Galabov B., Musaev D.G. et al. // J. Org. Chem. 2003. V. 68. № 4. P. 1496. https://doi.org/10.1021/jo0263723
- 19. Petrova T., Okovyvyy S., Gorb L., Leszczynski J. // J. Phys. Chem. A. 2008. V. 112. P. 5224. https://doi.org/10.1021/jp7102897
- 20. Chen R., Luo X., Liang G. // Theor. Chem. Acc. 2015. V. 134. P. 32. https://doi.org/10.1007/s00214-015-1634-6
- 21. Забалов М.В., Левина М.А., Крашенинников В.Г., Тисер Р.П. // Изв. РАН. Сер. Хим. 2014. № 8. С. 1740.
- 22. Vainio M.J., Johnson M.S. // Chem. Inf. Model. 2007. V. 47. P. 2462. https://doi.org/10.1021/c16005646
- 23. Stewart J.J.P. Stewart Computational Chemistry. 2016. Colorado Springs, CO, USA. http://OpenMOPAC.net
- 24. Neese F., Wennmohs F., Becker U., Riplinger C. // J. Chem. Phys. 2020. V. 152. P. 224108. https://doi.org/10.1063/5.0004608
- 25. Grimme S., Hansen A., Ehlert S., Mewes J.M. // J. Chem. Phys. 2021. V. 15460. P. 064103. https://doi.org/10.1063/5.0040021
- 26. Furness J.W., Kaplan A.D., Ning J. et al. // J. Phys. Chem. Lett. 2020. V. 11(19). P. 8208. https://doi.org/10.1021/acs.jpelett.0c02405
- 27. Weigend F., Alhrichs R. // Phys. Chem. Phys. Chem. 2005. V. 7. P. 3297. https://doi.org/10.1039/B508541A
- 28. Kruse H., Grimme S. // J. Chem. Phys. 2012. V. 136(15). P. 154101. https://doi.org/10.1063/1.3700154
- 29. Caldeweyher E., Ehlert S., Hansen A. et al. // Ibid. 2019. V. 150. P. 154122. https://doi.org/10.1063/1.5090222
- 30. Huniar U., Ning J., Furness J.W. et al. // Ibid. 2021. V. 15460. P. 061101. https://doi.org/10.1063/5.0041008
- 31. Ehlert S., Grimme S., Hanson A. // J. Phys. Chem. (A). 2022. V. 126. P. 3521. https://doi.org/10.1021/acs.jpca.2c02439
- 32. Kingsbury R., Gupta A., Bartel C. et al. // Phys. Rev. Mater. 2022. V. 6. P. 013801. https://doi.org/10.1103/PhysRevMaterials.6.013801
- 33. Grimme S. // Chem. Eur. J. 2012. V. 18(32). P. 9955. https://doi.org/10.1002/chem.201200497
- 34. Zheng J., Xu X., Truhlar D.G. // Theor. Chem. Acc. 2011. V. 128. P. 295. https://doi.org/10.1007/s00214-010-0846-z
- 35. Mardirossian N., Head-Gordon M. // J. Chem. Phys. 2016. V. 144. P. 214110. https://doi.org/10.1063/1.4952647
- 36. Vydrov O.A., Van Voorhis T. // Ibid. 2010. V. 133. P. 244103. https://doi.org/10.1063/1.3521275
- 37. Goerigk L., Mehta N. // Aust. J. Chem. 2019. V. 72. P. 563. https://doi.org/10.1071/CH19023
- 38. Fukui K. // Acc. Chem. Res. 1981. V. 14. P. 363. https://doi.org/10.1021/ar00072a001
- 39. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/
- 40. Li Y. Energy Diagram Plotter (CDXML 3.5.2), 2023. https://doi.org/10.5281/zenodo.7634466
- 41. Insausi A., Calabrese C., Parra M., et al. // Chem. Commun. 2020. V. 56(45). P. 6094. https://doi.org/10.1039/D0CC007604
- 42. Longarie A., Fernández J.A., Unamuno I., Castano F. // Chem. Phys. 2000. V. 260 (1–2). P. 83. https://doi.org/10.1016/S0301-0104 (00)00164-6