RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

SOME ASPECTS OF THE ENDOHEDRAL CLUSTER ORIENTATION IN THE EXOHEDRALLY FUNCTIONALIZED DyScN@C AND DyScN@C MOLECULES

PII
S0044453725060055-1
DOI
10.31857/S0044453725060055
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 6
Pages
866-871
Abstract
We present a computational study of the most energetically stable conformations and properties thereof in the dysprosium endohedral compounds of the MN@C type modified by exhohedral functionalization. We report the most stable configurations of the endohedral cluster and demonstrate good performance of the density functional theory (DFT) in combination with the large-core effective core potential (ECP) that incorporates the 4f-shell of the dysprosium ions.
Keywords
эндоэдральные фуллерены внешнесферная функционализация конформационное разнообразие квантово-химические расчеты
Date of publication
11.12.2024
Year of publication
2024
Number of purchasers
0
Views
12

References

  1. 1. Popov A.A., Yang S., Dunsch L. // Chem. Rev. 2013. V. 113. № 8. P. 5989.
  2. 2. Liu F., Spree L., Krylov D.S. et al. // Acc. Chem. Res. 2019. V. 52. № 10. P. 2981.
  3. 3. Velkos G., Krylov D.S., Kirkpatrick K. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 18. C. 5891.
  4. 4. Wang Y., Xiong J., Su J. et al. // Nanoscale. 2020. V. 12. № 20. P. 11130.
  5. 5. Stevenson S., Rice G., Glass T. et al. // Nature. 1999. V. 401. № 6748. C. 55.
  6. 6. Popov A.A., Pykhova A.D., Ioffe I.N. et al. // J. Am. Chem. Soc. 2014. V. 136. № 38. P. 13436.
  7. 7. Pykhova A.D., Semivrazhskaya O.O., Samoylova N.A. et al. // Dalton Trans. 2020. V. 49. № 26. P. 9137.
  8. 8. Westerström R., Dreiser J., Ptamonteze C. et al. // J. Am. Chem. Soc. 2012. V. 134. № 24. P. 9840.
  9. 9. Westerström R., Dreiser J., Ptamonteze C. et al. // Phys. Rev. B. 2014. V. 89. № 6. P. 060406(R).
  10. 10. Vieru V., Ungar L., Chibotaru L.F. // J. Phys. Chem. Lett. 2013. V. 4. № 21. P. 3565.
  11. 11. Khinevich V.E., Sudarkova S.M., Ioffe I.N. // Phys. Chem. Chem. Phys. 2024. V. 26. № 42. P. 26765.
  12. 12. Granovsky A.A. // Firefly v. 8.2, http://classic.chem.msu.su/gran/firefly/index.html
  13. 13. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. № 11. P. 1347.
  14. 14. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
  15. 15. Granovsky A.A. // J. Chem. Phys. 2011. V. 134. № 21. P. 214113.
  16. 16. Dolg M., Stoll H., Savin A., Preuss H. // Theor. Chim. Acta. 1989. V. 75. № 3. P. 173.
  17. 17. Dolg M., Stoll H., Preuss H. // J. Chem. Phys. 1989. V. 90. № 3. P. 1730.
  18. 18. Weigend F., Ahirichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297.
  19. 19. Goryunkov A.A., Kornienko E.S., Magdesieva T.V. et al. // Dalton Trans. 2008. № 48. C. 6886.
  20. 20. He D., Du X., Xiao Z., Ding L. // Org. Lett. 2014. V. 16. № 2. P. 612.
  21. 21. Aroua S., Garcia-Borras M., Bolter M.F. et al. // J. Am. Chem. Soc. 2015. V. 137. № 1. P. 58.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library