- PII
- S0044453725060085-1
- DOI
- 10.31857/S0044453725060085
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 99 / Issue number 6
- Pages
- 887-894
- Abstract
- The application of energy-efficient and environmentally safe technology of gas hydrate crystallization for purification of natural gas from hydrogen sulfide (HS) and carbon dioxide (CO) is considered. Thermodynamic modeling of the influence of HS and CO concentrations from 1.00 to 20.00 mol. % on gas hydrate dissociation pressures and filling of gas hydrate cavities with the gas mixture CH — CH — CH — n-CH — CO — HS — N in the temperature range of 273.15—283.15 K has been carried out. It is obtained that increasing the concentration of HS leads to a significant decrease in the dissociation pressures of gas hydrates. The filling of small gas hydrate cavities with HS molecules reaches 0.91. Increasing the concentration of CO leads to a slight increase in the dissociation pressures of gas hydrates. It is found that CO is poorly concentrated in the gas hydrate phase of the considered gas mixture. To extract CO it is necessary to apply multiple gas hydrate crystallization or to use natural gas deposits with low concentrations of CH.
- Keywords
- давления диссоциации газовые гидраты природный газ диоксид углерода сероводород
- Date of publication
- 09.12.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 12
References
- 1. Speight J.G. Natural gas: A basic handbook. Cambridge, Gulf Professional Publishing, 2018. 462 p.
- 2. Hafeei R., Akhavan A.N., Pakseresht S. et al. // Energy. 2021. V. 224. № 120167.
- 3. Мусин В.М. Переработка природного газа и конденсата. М.: Академия, 1999. 448 с.
- 4. Соловьев Н.Н., Салина Л.С., Скоробогатов В.А. // Вестн газовой науки. 2016. Т. 25. № 1. С. 125.
- 5. Bellussi G., Broccia P., Carati A. et al. // Microporous Mesoporous Mater. 2011. V. 146. № 1—3. Р. 134.
- 6. Пат. 2485998 (РФ).
- 7. Бык С.Ш., Макогон Ю.Ф., Фомина В.И. Газовые гидраты. М.: Химия, 1980. 296 с.
- 8. Qin J., Kuhs W.F. // AIChE J. 2013. V. 59. № 6. Р. 2155.
- 9. Bhawangirkar D.R., Adhikari J., Sangwai J.S. // J. Chem. Thermodyn. 2018. V. 117. P. 180.
- 10. Ward Z.T., Deering C.E., Marriott R.A. et al. // J. Chem. Eng. Data. 2015. V. 60. № 2. P. 403.
- 11. Liang S., Kusalik P.G. // Chem. Sci. 2011. V. 2. № 7. P. 1286.
- 12. Circone S., Stern L.A., Kirby S.H. et al. // J. Phys. Chem. B. 2003. V. 107. № 23. P. 5529.
- 13. Ma Z.W., Zhang P., Bao H.S. et al. // Renew. Sustain. Energy Rev. 2016. V. 53. P. 1273.
- 14. Duc N.H., Chauvy F., Herri J.-M. // Energy Convers. Manag. 2007. V. 48. № 4. P. 1313.
- 15. Eslamimanesh A., Mohammad A.H., Richon D. et al. // J. Chem. Thermodyn. 2012. V. 46. P. 62.
- 16. Dashti H., Lou X. // TMS Annu. Meet. Exhib. Energy Technol. 2018. P. 3.
- 17. Castellani B., Rossi F., Filipponi M. et al. // Biomass Bioenergy. 2014. V. 70. P. 330.
- 18. Kim K., Kim K.S., Lee J.E. et al. // Sep. Purif. Technol. 2018. V. 200. P. 29.
- 19. Ballard A.L., Sloan E.D. // Fluid Phase Equilib. 2002. V. 194—197. P. 371.
- 20. Parrish W.R., Prausnitz J.M. // Ind. Eng. Chem. Process Des. Dev. 1972. V. 11. № 1. P. 26.
- 21. Пат. 2576738 (РФ).
- 22. Gallagher J.E. Natural gas measurement handbook. Houston: Gulf Publishing Company, 2006. 496 p.
- 23. Liu G., Zhu L., Cao W. et al. // ACS Omega. 2021. V. 6. № 40. P. 26180.
- 24. Широкова Г.С., Елистратова М.В. // Транспорт на альтернативном топливе. 2011. Т. 20. № 2. С. 42.
- 25. Sloan E.D., Koh C.A. Clathrate hydrates of natural gases. Boca Raton: CRC Press, 2008. 721 p.
- 26. Castellan G.W. Physical chemistry. 3rd ed. London: Addison-Wesley Publishing Company, 1983. 1038 p.
- 27. John V.T., Papadopoulos K.D., Holder G.D. // AIChE J. 1985. V. 31. № 2. P. 252.
- 28. Chen G.J., Guo T.M. // Chem. Eng. J. 1998. V. 71. № 2. P. 145.
- 29. Klauda J.B., Sandler S.I. // Ind. Eng. Chem. Res. 2001. V. 40. № 20. P. 4197.
- 30. Намиот А.Ю. Растворимость газов в воде: Справочное пособие. Москва: Недра, 1991. 167 с.
- 31. Mortimer R.G. Physical chemistry. 3rd ed. London: Academic Press, 2008. 1392 p.
- 32. Кричевский И.Р., Казарновский Я.С. // Журн. физ. химии. 1939. Т. 13. № 3. С. 378.
- 33. Aspen physical property system V8.4. Burlington. 2013. 248 p.
- 34. Holder G.D., John V.T. // Fluid Phase Equilib. 1983. V. 14. P. 353.
- 35. Sato E., Miyoshi T., Ohmura R. et al. // Jpn. J. Appl. Phys. 2007. V. 46. № 9R. P. 5944.
- 36. Strobel T.A., Koh C.A., Sloan E.D. // Fluid Phase Equilib. 2009. V. 280. № 1—2. P. 61.
- 37. Sergeeva M.S., Mokhnachev N.A., Shablykin D.N. et al. // J. Nat. Gas Sci. Eng. 2021. Vol. 86. № 103740.
- 38. Seo Y., Lee S., Lee J. // Chem. Eng. Trans. 2013. V. 32. P. 163.
- 39. Sun J., Xin Y., Chou I—M. et al. // J. Chem. Eng. Data. 2020. V. 65. № 8. P. 3884.
- 40. Holder G.D., Corbin G., Papadopoulos K.D. // Ind. Eng. Chem. Fundam. 1980. V. 19. № 3. P. 282.
- 41. Avionitis D. // Chem. Eng. Sci. 1994. V. 49. № 8. P. 1161.
- 42. Lee J.H., Kim S.H., Kang J.W. et al. // Fluid Phase Equilib. 2016. V. 409. P. 136.
- 43. Маслов В.П. // Теоретическая и математическая физика. 2008. Т. 156. № 2. С. 303.
- 44. McKoy Y., Sinanoglu O. // J. Chem. Phys. 1963. V. 38. № 12. P. 2946.