RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

MODELING THE INFLUENCE OF HS AND CO CONCENTRATIONS ON HYDRATE FORMATION OF A MIXTURE APPROXIMATING NATURAL GAS

PII
S0044453725060085-1
DOI
10.31857/S0044453725060085
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 6
Pages
887-894
Abstract
The application of energy-efficient and environmentally safe technology of gas hydrate crystallization for purification of natural gas from hydrogen sulfide (HS) and carbon dioxide (CO) is considered. Thermodynamic modeling of the influence of HS and CO concentrations from 1.00 to 20.00 mol. % on gas hydrate dissociation pressures and filling of gas hydrate cavities with the gas mixture CH — CH — CH — n-CH — CO — HS — N in the temperature range of 273.15—283.15 K has been carried out. It is obtained that increasing the concentration of HS leads to a significant decrease in the dissociation pressures of gas hydrates. The filling of small gas hydrate cavities with HS molecules reaches 0.91. Increasing the concentration of CO leads to a slight increase in the dissociation pressures of gas hydrates. It is found that CO is poorly concentrated in the gas hydrate phase of the considered gas mixture. To extract CO it is necessary to apply multiple gas hydrate crystallization or to use natural gas deposits with low concentrations of CH.
Keywords
давления диссоциации газовые гидраты природный газ диоксид углерода сероводород
Date of publication
09.12.2024
Year of publication
2024
Number of purchasers
0
Views
12

References

  1. 1. Speight J.G. Natural gas: A basic handbook. Cambridge, Gulf Professional Publishing, 2018. 462 p.
  2. 2. Hafeei R., Akhavan A.N., Pakseresht S. et al. // Energy. 2021. V. 224. № 120167.
  3. 3. Мусин В.М. Переработка природного газа и конденсата. М.: Академия, 1999. 448 с.
  4. 4. Соловьев Н.Н., Салина Л.С., Скоробогатов В.А. // Вестн газовой науки. 2016. Т. 25. № 1. С. 125.
  5. 5. Bellussi G., Broccia P., Carati A. et al. // Microporous Mesoporous Mater. 2011. V. 146. № 1—3. Р. 134.
  6. 6. Пат. 2485998 (РФ).
  7. 7. Бык С.Ш., Макогон Ю.Ф., Фомина В.И. Газовые гидраты. М.: Химия, 1980. 296 с.
  8. 8. Qin J., Kuhs W.F. // AIChE J. 2013. V. 59. № 6. Р. 2155.
  9. 9. Bhawangirkar D.R., Adhikari J., Sangwai J.S. // J. Chem. Thermodyn. 2018. V. 117. P. 180.
  10. 10. Ward Z.T., Deering C.E., Marriott R.A. et al. // J. Chem. Eng. Data. 2015. V. 60. № 2. P. 403.
  11. 11. Liang S., Kusalik P.G. // Chem. Sci. 2011. V. 2. № 7. P. 1286.
  12. 12. Circone S., Stern L.A., Kirby S.H. et al. // J. Phys. Chem. B. 2003. V. 107. № 23. P. 5529.
  13. 13. Ma Z.W., Zhang P., Bao H.S. et al. // Renew. Sustain. Energy Rev. 2016. V. 53. P. 1273.
  14. 14. Duc N.H., Chauvy F., Herri J.-M. // Energy Convers. Manag. 2007. V. 48. № 4. P. 1313.
  15. 15. Eslamimanesh A., Mohammad A.H., Richon D. et al. // J. Chem. Thermodyn. 2012. V. 46. P. 62.
  16. 16. Dashti H., Lou X. // TMS Annu. Meet. Exhib. Energy Technol. 2018. P. 3.
  17. 17. Castellani B., Rossi F., Filipponi M. et al. // Biomass Bioenergy. 2014. V. 70. P. 330.
  18. 18. Kim K., Kim K.S., Lee J.E. et al. // Sep. Purif. Technol. 2018. V. 200. P. 29.
  19. 19. Ballard A.L., Sloan E.D. // Fluid Phase Equilib. 2002. V. 194—197. P. 371.
  20. 20. Parrish W.R., Prausnitz J.M. // Ind. Eng. Chem. Process Des. Dev. 1972. V. 11. № 1. P. 26.
  21. 21. Пат. 2576738 (РФ).
  22. 22. Gallagher J.E. Natural gas measurement handbook. Houston: Gulf Publishing Company, 2006. 496 p.
  23. 23. Liu G., Zhu L., Cao W. et al. // ACS Omega. 2021. V. 6. № 40. P. 26180.
  24. 24. Широкова Г.С., Елистратова М.В. // Транспорт на альтернативном топливе. 2011. Т. 20. № 2. С. 42.
  25. 25. Sloan E.D., Koh C.A. Clathrate hydrates of natural gases. Boca Raton: CRC Press, 2008. 721 p.
  26. 26. Castellan G.W. Physical chemistry. 3rd ed. London: Addison-Wesley Publishing Company, 1983. 1038 p.
  27. 27. John V.T., Papadopoulos K.D., Holder G.D. // AIChE J. 1985. V. 31. № 2. P. 252.
  28. 28. Chen G.J., Guo T.M. // Chem. Eng. J. 1998. V. 71. № 2. P. 145.
  29. 29. Klauda J.B., Sandler S.I. // Ind. Eng. Chem. Res. 2001. V. 40. № 20. P. 4197.
  30. 30. Намиот А.Ю. Растворимость газов в воде: Справочное пособие. Москва: Недра, 1991. 167 с.
  31. 31. Mortimer R.G. Physical chemistry. 3rd ed. London: Academic Press, 2008. 1392 p.
  32. 32. Кричевский И.Р., Казарновский Я.С. // Журн. физ. химии. 1939. Т. 13. № 3. С. 378.
  33. 33. Aspen physical property system V8.4. Burlington. 2013. 248 p.
  34. 34. Holder G.D., John V.T. // Fluid Phase Equilib. 1983. V. 14. P. 353.
  35. 35. Sato E., Miyoshi T., Ohmura R. et al. // Jpn. J. Appl. Phys. 2007. V. 46. № 9R. P. 5944.
  36. 36. Strobel T.A., Koh C.A., Sloan E.D. // Fluid Phase Equilib. 2009. V. 280. № 1—2. P. 61.
  37. 37. Sergeeva M.S., Mokhnachev N.A., Shablykin D.N. et al. // J. Nat. Gas Sci. Eng. 2021. Vol. 86. № 103740.
  38. 38. Seo Y., Lee S., Lee J. // Chem. Eng. Trans. 2013. V. 32. P. 163.
  39. 39. Sun J., Xin Y., Chou I—M. et al. // J. Chem. Eng. Data. 2020. V. 65. № 8. P. 3884.
  40. 40. Holder G.D., Corbin G., Papadopoulos K.D. // Ind. Eng. Chem. Fundam. 1980. V. 19. № 3. P. 282.
  41. 41. Avionitis D. // Chem. Eng. Sci. 1994. V. 49. № 8. P. 1161.
  42. 42. Lee J.H., Kim S.H., Kang J.W. et al. // Fluid Phase Equilib. 2016. V. 409. P. 136.
  43. 43. Маслов В.П. // Теоретическая и математическая физика. 2008. Т. 156. № 2. С. 303.
  44. 44. McKoy Y., Sinanoglu O. // J. Chem. Phys. 1963. V. 38. № 12. P. 2946.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library