- PII
- S0044453725060119-1
- DOI
- 10.31857/S0044453725060119
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 99 / Issue number 6
- Pages
- 912-918
- Abstract
- On the example of two polymorphic transformations in crystals of organic compounds (glycine and carbamazepine) and dehydration of carbamazepine dihydrate the influence of the material of the drum of a vibrating ball mill (steel or various polymers) on the result of mechanical impact on the sample is shown, as well as the possibility to use for studying this influence the method of manufacturing polymer liners in steel drums by 3D printing available in laboratory conditions.
- Keywords
- механохимия 3D-печать полиморфные превращения дегидратация глицин карбамазепин
- Date of publication
- 29.11.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 9
References
- 1. Espro C., Rodriguez-Padron D. // Curr. Opin. Green Sustainable Chem. 2021. V. 30. P. 100478. https://doi.org/10.1016/j.cogsc.2021.100478
- 2. Ni S., Hribersek M., Baddigam S.K., et al. // Angew. Chem. Intern. Ed. 2021. V. 60. № 12. P. 6660. https://doi.org/10.1002/anie.202010202
- 3. Ardila-Fierro K.J., Hernández J.G. // ChemSusChem. 2021. V. 14. № 10. P. 2145. https://doi.org/10.1002/cssc.202100478
- 4. Fantozzi N., Volle J.N., Porcheddu A. et al. // Chem. Soc. Rev. 2023. V. 52. P. 6680. https://doi.org/10.1039/D2CS00997H
- 5. Mohammed J., Osuegba O.S., Bulus Y.E. // Res. J. Chem. Sci. 2024. V. 14. № 1. P. 63. https://isca.me/rjcs/Archives/v14/11/8.IS-CA-RJCS-2023-022.pdf
- 6. Hasa D., Schneider Rauber G., Voinovich D., Jones W. // Angew. Chem. 2015. V. 127. № 25. P. 7479. https://doi.org/10.1002/ange.201501638
- 7. Hasa D., Carlino E., Jones W. // Cryst. Growth Des. 2016. V. 16. № 3. P. 1772. https://doi.org/10.1021/acs.cgd.6b00084
- 8. Frisčić T., Halasz I., Beldon P.J. et al. // Nat. Chem. 2013. V. 5. № 1. P. 66. https://doi.org/10.1038/nchem.1505
- 9. Do J.L., Frisčić T. // ACS Cent. Sci. 2017. V. 3. № 1. P. 13. https://doi.org/10.1021/acscentsci.6b00277
- 10. Julien P.A., Frisčić T. // Cryst. Growth Des. 2022 V. 22. № 9. P. 5726. https://doi.org/10.1021/acs.cgd.2c00587
- 11. Michalchuk A.A., Emmerling F. // Angew. Chem. Intern. Ed. 2022 V. 61. № 21. P. e202117270. https://doi.org/10.1002/anie.202117270
- 12. Willis-Fox N. // Front. Chem. (Lausanne, Switzerland). 2024. V. 12. P. 1490847. https://doi.org/10.3389/fchem.2024.1490847
- 13. Gracin D., Štrukli V., Frisčić T. et al. // Angew. Chem. Intern. Ed. 2014. V. 53. № 24. P. 6193. https://doi.org/10.1002/anie.201402334
- 14. Lukin S., Tireli M., Stolar T. et al. // J. Amer. Chem. Soc. 2019. V. 141. № 3. P. 1212. https://doi.org/10.1021/jacs.8b12149
- 15. Lukin S., Užarević K., Halasz I. // Nat. Protoc. 2021. V. 16. № 7. P. 3492. https://doi.org/10.1038/s41596-021-00545-x
- 16. Julien P.A., Arhangelskis M., Germann L.S. et al. // Chem. Sci. 2023. V. 14. № 43. P. 12121. https://doi.org/10.1039/d3sc04082h
- 17. Stojaković J., Farris B.S., MacGillivray L.R. // Chem. Commun. 2012. V. 48. № 64. P. 7958. https://doi.org/10.1039/C2CC33227B
- 18. Baier D.M., Spula C., Famensich S. et al. // Angew. Chem. Intern. Ed. 2023. V. 62. № 20. P. e202218719. https://doi.org/10.1002/anie.202218719
- 19. Martinez V., Stolar T., Karadeniz B., et al. // Nat. Rev. Chem. 2023. V. 7. № 1. P. 51. https://doi.org/10.1038/s41570-022-00442-1
- 20. Pickhardt W., Beakovic C., Mayer M., et al. // Angew. Chem. Intern. Ed. 2022. V. 61. № 34. P.e202205003. https://doi.org/10.1002/anie.202205003
- 21. Pickhardt W., Siegfried E., Fabig S. et al. // Angew. Chem. Intern. Ed. 2023. V. 62. № 27. P.e202301490. https://doi.org/10.1002/anie.202301490
- 22. Germann L.S., Arhangelskis M., Etter M. et al. // Chem. Sci. 2020. V. 11. № 37. P. 10092. https://doi.org/10.1039/D0SC03629C
- 23. Losev E., Arkhipov S., Kolydakov D. et al. // CrystEngComm. 2022. V. 24. № 9. P. 1700. https://doi.org/10.1039/D1CE01703A
- 24. Linberg K., Emmerling F., Michalchuk A.A. // Cryst. Growth Des. 2022. V. 23. № 1. P. 19. https://doi.org/10.1021/acs.cgd.2c01227
- 25. Chatziddi A., Škofepová E., Kohout M. et al. // CrystEngComm. 2022. V. 24. № 11. P. 2107. https://doi.org/10.1039/D1CE01561C
- 26. Rappen M.F., Beissel L., Geisler J. et al. // RSC Mechanochem. 2024. V. 1. № 4. P. 386. https://doi.org/10.1039/D4MR00059E
- 27. Michalchuk A.A., Tumanov I.A., Boldyreva E.V. // CrystEngComm. 2019. V. 21. № 13. P. 2174. https://doi.org/10.1039/C8CE02019K
- 28. Архипов С.Г., Колыбалов Д.С., Лосев Е.А. и др. // Способ осуществления эксперимента для исследования механохимических превращений и устройство для реализации протекания механохимических превращений, Номер: RU2794882C1, опубликован 25 апр. 2023 г., Заявка 2022116688 от 21 июня 2022 г.
- 29. Oglenko A.G., Drebushchak V.A., Bogdanova E.G. et al. // J. Therm. Anal. Calorim. 2017. V. 127. № 2. P. 1593. https://doi.org/10.1007/s10973-016-6003-8
- 30. Boldyreva E. // Israel J. Chem. 2021. V. 61. № 11–12. P. 828. https://doi.org/10.1002/ijch.202100103
- 31. Grzesiak A.L., Lang M., Kim K. et al. // J. Pharm. Sci. 2003. V. 92. № 11. P. 2260. https://doi.org/10.1002/jps.10455
- 32. Arlin J.B., Price L.S., Price S.L. et al. // Chem. Commun. 2011. V. 47. № 25. P. 7074. https://doi.org/10.1039/C1CC11163J
- 33. Kamali N., Gniado K., McArdle P. et al. // Org. Process Res. Dev. 2018. V. 22. № 7. P. 796. https://doi.org/10.1021/acs.oprd.8b00073
- 34. Zheltikova D., Losev E., Boldyreva E. // CrystEngComm. 2023. V. 25. № 34. P. 4879. https://doi.org/10.1039/D3CE00544E
- 35. Scaramuzza D., Schneider Rauber G., Voinovich D. et al. // Cryst. Growth Des. 2018. V. 18. № 9. P. 5245. https://doi.org/10.1021/acs.cgd.8b00687
- 36. Boldyreva E.V., Drebushchak T.N., Shutova E.S. // Zeitschr. Kristallogr.-Cryst. Mater. 2003. V. 218. № 5. P. 366. https://doi.org/10.1524/zkri.218.5.366.20729
- 37. El Hassan N., Ikni A., Gillet J.-M. et al. // Cryst. Growth Des. 2013. V. 13. № 7. P. 2887. https://doi.org/10.1021/cg4002994