RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

ESTIMATION OF FLUCTUATIONS OF ALUMINUM ELECTRODE POTENTIAL IN CHLORIDE-CONTAINING SOLUTIONS AT ANODIC POLARIZATION BY MICROCURRENTS

PII
S0044453725060143-1
DOI
10.31857/S0044453725060143
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 6
Pages
942-951
Abstract
The structure of integral curves obtained by processing chronopotentiograms (CPG) of an aluminum anode polarized by a weak (at the level of one to several μA/cm) current in chloride-containing medium is self-similar. This universal property allows us to find their fitting function and calculate the reduced (compressed dependence; the initial number of points is 1000, described by the number of AFC-14 modes). The initial curve is invariant with respect to its transformed counterpart after five-fold compression. For two different types of data, obtained with open circuit and with metal polarization by microcurrent, a common fitting platform related to its parameters can be obtained. There are various methods of detrending: i.e., obtaining a trend from the original trendless noise. The simplest method of obtaining a trend that does not give computational errors is obtained from a numerical integration formula using the trapezoidal method. It is this trend, obtained from the original trendless sequence without additional data processing errors, that it makes sense to define as a clear trend. The approximation parameters can be used to compare various random processes, including those caused by reactions on the metal surface with changes in its microrelief during redox processes.
Keywords
алюминий хлоридсодержащий раствор анодная поляризация ток хроноионограмма флуктуации принцип самоподобия
Date of publication
07.12.2024
Year of publication
2024
Number of purchasers
0
Views
11

References

  1. 1. Nigancioglu K., Holtan H. // Electrochim. Acta. 1979. № 24. P. 1229
  2. 2. Hurlen T., Lian H., Odegard O.S., Valant T. // Electrochim. Acta. 1984. № 29. P. 579
  3. 3. Lenderink H.J.W., van der Linden M., de Wit J.H.W. // Electrochim. Acta. 1993. № 38. P. 1989
  4. 4. Kolies A., Besing A.S., Baradlai P., et al. // J. Electrochem. Soc. 2001. № 148. P. B251
  5. 5. Verpoort F., Haemers T., Roose P., Maes J.P. // Appl. Spectr. 1999. № 53. P. 1528
  6. 6. Al Mayouf A.M. // Corr. Prev. Control. 1996. 43. P. 68
  7. 7. Radošević J., Kiškić M., Despić A.R. // J. Appl. Electrochem. 1992. № 22. P. 649
  8. 8. Garrigues L., Pebere N., Dabosi F. // Electrochim. Acta. 1996. № 41. P. 1209
  9. 9. Burri G., Lucati W., Haas O. // J. Electrochem. Soc. 1989. № 136. P. 267
  10. 10. Equey J.-F., Müller S., Desilvestro J., Haas O. // Ibid. Soc. 1992. № 139. P. 1499
  11. 11. Breslin C.B., Rudd A.L. // Corros. Sci. 2000. № 42. P. 1023
  12. 12. Aballe A., Bethencourt M., Botana F.J., Marcos M. // Electrochim. Acta. 1999. № 44. P. 4805
  13. 13. Pagitsas M., Sazou D. // J. Electroanal. Chem. 1999. № 471. P. 132
  14. 14. Uruchurtu J.C., Dawson J.L. // Corrosion. 1987. № 43. P. 19
  15. 15. Isaac J.W., K.R. Hebert J. // Electrochem. Soc. 1999. № 146. P. 502
  16. 16. Mansfeld F., Xiao H., Han L.T., Lee C.C. // Prog. Org. Coat. 1997. № 30. P. 89
  17. 17. Mansfeld F., Lee C.C. // J. Electrochem. Soc. 1997. № 144. P. 2068
  18. 18. Greisiger H., Schauer T. // Prog. Org. Coat. 2000. № 39. P. 31
  19. 19. Mills D.J., Mabbutt S. // Ibid. 2000. № 39. P. 41
  20. 20. Nagulo A., Mansfeld F. // Corros. Sci. 2001. № 43. P. 2001
  21. 21. Tan Y.J., Bailey S., Kinsella B. // Ibid. 2002. № 44. P. 1277
  22. 22. Aballe A., Bethencourt M., Botana F.J., et al. // Electrochim. Acta. 2002. № 47. P. 1415
  23. 23. Mansfeld F., Sun Z., Hsu C.H. // Ibid. 2001. № 46. P. 3651
  24. 24. Smulko J., Darowicki K., Zielinski A. // Ibid. 2002. № 47. P. 1297
  25. 25. Biervagen G.P. // J. Electrochem. Soc. 1994. № 141. P. L155
  26. 26. Bertocci U., Gabrielli C., Huet F., Keddam M. // Ibid. 1997. № 144. P. 31
  27. 27. Mansfeld F., Xiao H. // Ibid. 1994. № 141. P. 1403
  28. 28. Xiao H., Mansfeld F. // Ibid. 1994. № 141. P. 2332
  29. 29. Mansfeld F., Sun Z., Hsu C.H., Nagulo A. // Corros. Sci. 2001. № 43. P. 341
  30. 30. Cheng Y.F., Luo J.L., Wilmont M. // Electrochim. Acta. 2000. № 45. P. 1763
  31. 31. Bautista A., Bertocci U., Huet F. // J. Electrochem. Soc. 2001. № 148. P. B412
  32. 32. Lowe A.M., Eren H., Bailey S.I. // Corros. Sci. 2003. № 45. P. 941
  33. 33. Cotits R.A., Al-Awadhi M.A.A., Al-Mazeedi H., Turgoose S. // Electrochim. Acta. 2001. № 46. P. 3665
  34. 34. Smulko J., Darowicki K. // J. Electroanal. Chem. 2003. № 545. P. 59
  35. 35. Aballe A., Huet F. // J. Electrochem. Soc. 2002. № 149. P. B89
  36. 36. Cotits R.A. Interpretation of electrochemical noise data // Corrosion. 2001. 57. P. 265
  37. 37. Mansfeld F. // Proceedings of the 18th Int. Conference on Noise and Fluctuations-ICNF; 2005 Aug 24; Los Angeles, CA (USA): American Institute of Physics; 2005. P. 623
  38. 38. Pride S.T, Scully J.R, Hudson J.L. // J. Electrochem Soc. 1994. № 141. P. 3028
  39. 39. Lou W, Ogura K. // Electrochim. Acta. 1995. № 40. P. 667
  40. 40. Sazou D., Diamantopoulou A., Pagitsas M. // J. Electroanal Chem. 2000. № 489. P. 1
  41. 41. Bassett M.R, Hudson J.L. // J. Phys. Chem. 1989. № 93. P. 2731
  42. 42. Dewald H.D., Parmananda P., Rollins R.W. // J. Electrochem Soc. 1993. № 140. P. 1969
  43. 43. Press W.H., Flannery B.P., Teukolsky S.A. et al. // Cambridge (UK). V. 1. Cambridge University Press, 1992. 963 p.
  44. 44. Schauer T., Greisiger H., Dulog L. // Electrochim Acta. 1998. № 43. P. 2423
  45. 45. Burg J.P. Modern Spectrum Analysis. / Ed by D.G. Childers. New York (NY): IEEE Press, 1978. 334 p.
  46. 46. Pujar M.G., Anita T., Shaikh H., et al. // Int. J. Electrochem. Sci. 2007. № 2. P. 301
  47. 47. Bertocci U., Frydman J., Gabrielli C., et al. // J. Electrochem. Soc. 1998. № 145. P. 2780
  48. 48. Van den Bos A. // IEEE Trans. Inform. Theory. 1997. № 17. P. 493
  49. 49. Edward J.A., Fitelson M.M. // IEEE Trans. Inform. Theory. 1973. № 19. P. 232
  50. 50. Nigmatullin Raoul R., Yang Quan Chen // Mathematics. 2023. № 11. P. 278
  51. 51. Nigmatullin R.R., Lino P., Maione G. // New Digital Signal Processing Methods Applications to Measurement and Diagnostics. ISBN978-3-030-45359-6 (eBook). https://doi.org/10.1007/978-3-030-45359-6. Springer, 2020
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library