- Код статьи
- S3034553725070112-1
- DOI
- 10.7868/S3034553725070112
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 99 / Номер выпуска 7
- Страницы
- 1056-1062
- Аннотация
- Методом твердофазного синтеза получены однофазные керамические образцы новых составов (1–x)(KNa)NbO–xSrZrO (x = 0–0.15), модифицированные добавкой 2 мас. % фторида лития LiF, и изучены их кристаллическая структура, микроструктура, диэлектрические и нелинейные оптические свойства. Установлено формирование фазы со структурой перовскита с псевдокубической элементарной ячейкой в модифицированных образцах. Выявлено формирование более мелкозернистой микроструктуры при увеличении содержания SrZrO. Сегнетоэлектрические фазовые переходы подтверждены методом диэлектрической спектроскопии. Установлено понижение температуры фазовых переходов и ослабление нелинейных оптических свойств по мере увеличения содержания цирконата стронция в образцах.
- Ключевые слова
- керамика структура перовскита рентгенофазовый анализ микроструктура диэлектрические свойства
- Дата публикации
- 19.12.2024
- Год выхода
- 2024
- Всего подписок
- 0
- Всего просмотров
- 31
Библиография
- 1. Valant M. // Progr. Mater. Science. 2012. V. 57. P. 980. https://doi.org/:10.1016/j.pmatsci.2012.02.001
- 2. Bai Y., Han X., Ding K., Qiao L. // Energy Technol. 2017. V. 5. P. 703. https://doi.org/10.1002/ente.201600456
- 3. Ozbolt M., Kitanovski A., Tusek J., Poredos A. // Int. J. Refrig. 2014. V. 40. P. 174. https://doi.org/10.1016/j.ijrefrig.2013.11.007
- 4. Lu S.-G., Zhang Q. // Adv. Mater. 2009. V. 21. P. 1983. https://doi.org/10.1002/adma.200802902
- 5. Axelsson A.-K., Goupil F. Le, Valant M., Alford N.M. // Acta Mater. 2017. V. 124. P. 120. https://doi.org/10.1016/j.actamat.2016.11.001
- 6. Weyland F., Acosta M., Koruza J. et al. // Adv. Funct. Mater. 2016. V. 26. P. 7326. https://doi.org/10.1002/adfm.201602368
- 7. Mischenko A.S., Zhang Q., Scott J.F. et al. // Science. 2006. V. 311. P. 1270. https://doi.org/10.1126/science.1123811
- 8. Suchaneck G., Gerlach G. // Mater. Today: Proceed. 2016. V. 3. P. 622. https://doi.org/10.1016/j.matpr.2016.01.100
- 9. Grünebohm A., Ma Y.B., Marathe M. et al. // Energy Technol. 2018. V. 6. P. 1491. https://doi.org/10.1002/ente.201800166
- 10. Samantaray K.S., Amin R., Rini E. et al. // J. Alloys Compd. 2022. V. 903. Art. № 163837. https://doi.org/10.1016/j.jallcom.2022.163837
- 11. Luo L., Jiang X., Zhang Y., Li K. // J. Eur. Ceram. Soc. 2017. V. 37. P. 2803. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.02.047
- 12. Srikanth K., Vaish R. // J. Eur. Ceram. Soc. 2017. V. 37. P. 3927. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.04.058
- 13. Kimmel A., Gindele O., Duffy D., Cohen R. // Appl. Phys. Lett. 2019. V. 115. Art. № 023902. https://doi.org/10.1063/1.5096592
- 14. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment // Offic. J. Europ. Union L 37. 2003. V. 46. P. 19–23. http://data.europa.eu/eli/dir/2002/95/oj
- 15. Yang Z., Du H., Jin L. and Poelman D. // J. Mater. Chem. A. 2021. V. 9. P. 18026. https://doi.org/10.1039/d1ta04504k
- 16. Wu J. // J. Appl. Phys. 2020. V. 127 Art. № 190901. https://doi.org/10.1063/5.0006261
- 17. Panda P.K. // J. Mater. Sci. 2009. V. 44. P. 5049. https://doi.org/10.1007/s10853-009-3643-0
- 18. Rödel J., Jo W., Seifert T.P. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 1153. https://doi.org/10.1111/j.1551-2916.2009.03061.x
- 19. Bernard J., Bencan A., Rojac T. et al. // J. Am. Ceram. Soc. 2008. V. 91. P. 2409. https://doi.org/10.1111/j.1551-2916.2008.02447.x
- 20. Kumar R., Singh S. // J. Alloys Compd. 2017. V. 723. P. 589. https://dx.doi.org/10.1016/j.jallcom.2017.06.252
- 21. Liu Z., Fan H., Lei S. et al. // J. Eur. Ceram. Soc. 2017. V. 37. P. 115. https://dx.doi.org/10.1016/j.jeurceramsoc.2016.07.024
- 22. Kumar R., Singh S. // J. Alloys Compd. 2018. V. 764. P. 289. https://doi.org/10.1016/j.jallcom.2018.06.083
- 23. Politova E.D., Golubko N.V., Kaleva G.M. et al. // J. Adv. Dielect. 2018. V. 8. P. 1850004. https://doi.org/10.1142/S2010135X18500042
- 24. Politova E.D., Golubko N.V., Kaleva G.M. et al. // Ferroelectrics. 2019. V. 538. P. 45. https://doi.org/10.1080/00150193.2019.1569984.
- 25. Kurtz S.K., Perry T.T. // J. Appl. Phys. 1968. V. 39. P. 3798. https://doi.org/10.1109/JQE.1968.1075108.