RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

EFFECT OF THE PRESENCE OF [Al(HO)] COMPLEXES ON THE MICROSTRUCTURE AND MOLECULAR MOBILITY IN MIXTURES OF ETHYLAMMONIUM AND ALUMINUM NITRATES ACCORDING TO MOLECULAR DYNAMICS SIMULATION DATA

PII
S3034553725070138-1
DOI
10.7868/S3034553725070138
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 7
Pages
1075-1084
Abstract
The effect of the presence of an aqueous complex near the aluminum cation ([Al(HO)]) on the microstructure and molecular mobility in a mixture of ethylammonium nitrate (EAN) and aluminum nitrate has been studied. Molecular dynamics, which allows describing the evolution of the system at the molecular level, has been chosen as the method of investigation. The simulation results of three systems: EAN, EAN + Al(NO) and EAN + [Al(HO)][(NO )] have been analyzed. Radial distribution functions were calculated to analyze in detail the changes in microstructure upon addition of anhydrous aluminum nitrate to EAN and upon addition of aquacomplexes around aluminum ions. In addition, several kinetic characteristics are calculated for the system EAN [Al(HO)][(NO )]: self-diffusion coefficients of the mixture components and rotational reorientation times of the nitrate anion. It is demonstrated that water appearing during the preparation of mixtures with aluminum salts, which in some cases cannot be completely removed by standard methods, has a marked effect on the structure and properties of the system. This effect should be taken into account when developing mixtures for various applications.
Keywords
ионные жидкости компьютерное моделирование метод молекулярной динамики микроструктура самодиффузия вращательная переориентация функция радиального распределения
Date of publication
07.12.2024
Year of publication
2024
Number of purchasers
0
Views
27

References

  1. 1. Ionic Liquids – Classes and Properties / Ed. by Handy S. InTech, 2011. 344 p.
  2. 2. Ionic Liquids in Synthesis / Ed. by Wasserscheid P., Welton T.: Wiley-VCH: Weinheim, 2008. 776 p.
  3. 3. Ionic Liquids / Ed. by B. Kirchner, B. Clare: Topics in current chemistry; Springer Verlag: Heidelberg; New York, 2009. 345 p.
  4. 4. Electrochemical Aspects of Ionic Liquids, Second Edition / Ed. by Ohno H., N.J. Wiley: Hoboken, 2011. 504 p.
  5. 5. Ghandi K. // Green Sustain. Chem. 2014. V. 4. № 1. P. 44. https://doi.org/10.4236/gsc.2014.41008.
  6. 6. Fedorov M.V., Kornyshev A.A. // Chem. Rev. 2014. V. 114. № 5. P. 2978. https://doi.org/10.1021/cr400374x.
  7. 7. Timperman L., Béguin F., Frackowiak E., Anouti M. // J. Electrochem. Soc. 2014. V. 161. № 3. P. A228. https://doi.org/10.1149/2.016403jes.
  8. 8. Salanne M. // Top. Curr. Chem. 2017. V. 375. № 3. P. 63. https://doi.org/10.1007/s41061-017-0150-7.
  9. 9. Lu X., Burrell G., Separovic F., Zhao C. // J. Phys. Chem. B. 2012. V. 116. № 30. P. 9160. https://doi.org/10.1021/jp304735p.
  10. 10. Plechkova N.V., Seddon K.R. // Chem. Soc. Rev. 2008. V. 37. P. 123. https://doi.org/10.1039/B006677J.
  11. 11. Scarpellini E., Usula M., Caminiti R. // J. Mol. Liq. 2017. V. 226. P. 9. https://doi.org/10.1016/j.molliq.2016.09.095.
  12. 12. Balducci A. // Top. Curr. Chem. 2017. V. 375. № 2. P. 20. https://10.1007/s41061-017-0109-8.
  13. 13. Forsyth M., Yoon H., Chen F., et al. // J. Phys. Chem. C. 2016. V. 120. № 8. P. 4276. 10.1021/acs.jpcc.5b11746.
  14. 14. Overbeck V., Appelhagen A., Rößler R., et al. // J. Mol. Liq. 2021. V. 322. P. 114983. https://doi.org/10.1016/j.molliq.2020.114983.
  15. 15. Filippov A., Alexandrov A.S., Gimatdinov R., Shah F.U. // J. Mol. Liq. 2021. V. 340. P. 116841. https://doi.org/10.1016/j.molliq.2021.116841.
  16. 16. Filippov A., Gnezdilov O.I., Luchkin A.G., Antzutkin O.N. // J. Mol. Liq. 2019. V. 284 P. 366. https://doi.org/10.1016/j.molliq.2019.04.021.
  17. 17. Hjalmarsson N., Atkin R., Rutland M.W. // J. Phys. Chem. C. 2016. V. 120. № 47. P. 26960. https://doi.org/10.1021/acs.jpcc.6b10626.
  18. 18. Johnson C.A., Parker A.W., Donaldson P.M., Garrett-Roe S. // J. Chem. Phys. 2021. V. 154. № 13. P. 134502. https://doi.org/10.1063/5.0044822.
  19. 19. Ausín D., Trenzado J.L., Turmine M., et al. // Int. J. Mol. Sci. 2022. V. 23. P. 16040. https://doi.org/10.3390/ijms232416040.
  20. 20. Sonnleitner T., Turton D.A., Hefter G., et al. // J. Phys. Chem. B. 2015. V. 119. № 29. P. 8826. https://doi.org/10.1021/jp502935t.
  21. 21. Gnezdilov O.I., Antzutkin O.N., Gimatdinov R., Filippov A. // Magn. Reson. Imag. 2020. V. 74. P. 84. https://doi.org/10.1016/j.mri.2020.09.012.
  22. 22. Mariani A., Bonomo M., Wu B., et al. // Phys. Chem. Chem. Phys. 2017. V. 19. P. 27212. https://doi.org/10.1039/C7CP04592A.
  23. 23. Gomez-Gonzalez V., Docampo-Alvarez B., Montes-Campos H., et al. // Phys. Chem. Chem. Phys. 2018. V. 20. № 28. P. 19071. https://doi.org/10.1039/C8CP02933D.
  24. 24. Matveev V.V., Ievlev A.V., Vovk M.A., et al. // J. Mol. Liq. 2019. V. 278. P. 239. https://doi.org/10.1016/j.molliq.2019.01.010.
  25. 25. Matveev V.V., Ievlev A.V., Šoltésová M., et al. // Magn. Reson. Chem. 2022. V. 60. № 2. P. 221. https://doi.org/10.1002/mrc.5220.
  26. 26. Ubovich M., Egorov A.V., Chizhik V.I. // Russ. J. Phys. Chem. A. 2022. V. 96. № 7. P. 1427. https://doi.org/10.1134/S0036024422070330.
  27. 27. Lyubartsev A.P., Laaksonen A. // Comp. Phys. Comm. 2000. V. 128. № 3. P. 565. https://doi.org/10.1016/S0010-4655 (99)00529-9.
  28. 28. Nose S. // Mol. Phys. 1984. V. 52. № 2. P. 255. https://doi.org/10.1080/00268978400101201.
  29. 29. Martyna G.J., Tobias D.J., Klein M.L. // J. Chem. Phys. 1994. V. 101. № 5. P. 4177. https://doi.org/10.1063/1.467468.
  30. 30. Martyna G.J., Tuckerman M.E., Tobias D.J., Klein M.L. // Mol. Phys. 1995. V. 87. № 5. P. 1117. https://doi.org/10.1080/00268979600100761.
  31. 31. Verlet L. // Phys. Rev. 1967. V. 159 № 1. P. 98. doi: 10.1103/PhysRev.159.98.
  32. 32. Ewald P.P. // Ann. Phys. 1921. V. 369 № 3. P. 253. http://dx.doi.org/10.1002/andp.19213690304.
  33. 33. Ebner C., Sansone R., Hengrasmee S., Probst M. // Int. J. Quant. Chem. 1999. V. 75. P. 805. https://doi.org/10.1002/ (SICI)1097–461X(1999)75:4/53.0.CO;2-Y.
  34. 34. Megyes T., Balint S., Peter E., et al. // J. Phys. Chem. B. 2009. V. 113. № 13. P. 4054. https://doi.org/10.1021/jp806411c.
  35. 35. Umebayashi Y., Chung W.-L., Mitsugi T., et al. // J. Comput. Chem. Jpn. 2008. V. 7. № 4. P. 125. https://doi.org/10.2477/jccj.H2013.
  36. 36. Laaksonen A., Kovacs H. // Can. J. Chem. 1994. V. 72. № 11. P. 2278. https://doi.org/10.1139/v94-290.
  37. 37. Choe J.-I., Kim K., Chang S.-K. // Bull. Korean Chem. Soc. 2000. V. 21. № 2. P. 200.
  38. 38. Gómez-González V., Docampo-Álvarez B., Otero-Mato J.M., et al. // Phys. Chem. Chem. Phys. 2018. V. 20. № 28. P. 12767. https://doi.org/10.1039/C8CP01180J
  39. 39. Méndez-Morales T., Carrete J., Cabeza O., et al. // J. Phys. Chem. B. 2014. V. 118. № 3. P. 761. https://doi.org/10.1021/jp410090f.
  40. 40. Gómez-González V., Docampo-Álvarez B., Cabeza O., et al. // J. Chem. Phys. 2015. V. 143. № 12. P. 124507. https://doi.org/10.1063/1.4931656.
  41. 41. Gómez-González V., Docampo-Álvarez B., Otero-Mato J., et al. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 12767. https://doi.org/10.1039/C8CP01180J.
  42. 42. Faro T.M.C., Thim G.P., Skaf M.S. // J. Chem. Phys. 2010. V. 132. P. 114509. https://doi.org/10.1063/1.3364110.
  43. 43. Rappé A., Casewit C., Colwell K., et al. // J. Am. Chem. Soc. 1992. V. 114. № 25. P. 10024. https://doi.org/10.1021/ja00051a040.
  44. 44. Wasserman E., Rustad J.R., Xantheas S.S. // J. Chem. Phys. 1997. V. 106. P. 9769. https://doi.org/10.1063/1.473866.
  45. 45. Spångberg D., Hermansson K. // J. Chem. Phys. 2004. V. 120. P. 4829. https://doi.org/10.1063/1.1641191.
  46. 46. Martínez J.M., Pappalardo R.R., Marcos E.S. // J. Am. Chem. Soc. 1999. V. 121. № 13. P. 3175. https://doi.org/10.1021/ja9830748.
  47. 47. Lauenstein A., Hermansson K., Lindgren J., et al. // Int. J. Quant. Chem. 2000. V. 80. P. 892. https://doi.org/10.1002/1097-461X (2000)80:4/53.0.CO;2-Q.
  48. 48. Hofer T.S., Randolf B.R., Rode B.M. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 1382. https://doi.org/10.1039/B417491G.
  49. 49. Bylaska E.J., Valiev M., Rustad J.R., Weare J.H. // J. Chem. Phys. 2007. V. 126. № 10. P. 104505. https://doi.org/10.1063/1.2566868.
  50. 50. Berendsen H.J.C., Grigera J.R., Straatsma T.P. // J. Phys. Chem. 1987. V. 91. № 24. P. 6269. https://doi.org/10.1021/J100308A038.
  51. 51. Ryckaert J. – P., Ciccotti G., Berendsen H.J.C. // J. Comput. Phys. 1977. V. 23. № 3. P. 327. https://doi.org/10.1016/0021-9991 (77)90098-5.
  52. 52. Jacquet Q., Rousse G., Iadecola A., et al. // Chem. Mater. 2018. V. 30. № 2. P. 392. https://doi.org/10.1021/acs.chemmater.7b04117.
  53. 53. Ubovich M., Matveev V.V., Vovk M.A., Chizhik V.I. // J. Phys. Chem. Lett. 2023. V. 14. № 41. P. 9324. https://doi.org/10.1021/acs.jpclett.3c01965.
  54. 54. Kharkov B.B., Podkorytov I.S., Bondarev S.A., et al. // Angew. Chem. Int. Ed. 2021. V. 60. P. 15445. https://doi.org/10.1002/anie.202102408.
  55. 55. Podkorytov I.S., Skrynnikov N.R. // J. Magn. Reson. 2022. V. 344. P. 107303. https://doi.org/10.1016/j.jmr.2022.107303.
  56. 56. Gordon R.G. // Adv. Magn. Opt. Reson. 1968. V. 3. P. 1. https://doi.org/10.1016/B978-1-4832-3116-7.50008-4.
  57. 57. Magnetic Resonance and Its Applications / Ed. by V.I. Chizhik, Y.S. Chernyshev, A.V. Donets, V.V. Frolov, A.V. Komolkin, M.G. Shelyapina. Springer-Verlag, 2014. 782 p. https://doi.org/10.1007/978-3-319-05299-1.
  58. 58. Куни Ф.М. Статистическая физика и термодинамика. М.: Наука, 1981. 352 с.
  59. 59. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. Часть 1. 5-е изд. М.: Физматлит, 2001. 616 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library