- PII
- S3034553725070151-1
- DOI
- 10.7868/S3034553725070151
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 99 / Issue number 7
- Pages
- 1094-1101
- Abstract
- The sorption ability of the synthesized polymer based on carboxymethylcellulose and glycidylacrylate towards Cu, Ni, Fe, Mn ions has been studied. It has been shown that the sorption of metal ions is reliably described by the Langmuir model, and the process itself has a physical character. By the method of thermogravimetric analysis it has been established that the process of thermodegradation of the polymer occurs in three steps, and of its complex with copper – in four steps. The activation energy of decomposition of the initial polymer for each step is in the range of 29–57 kJ/mol, and for its complex with copper – 58–120 kJ/mol. The introduction of Cu(II) increases the thermostability of the obtained polymer based on carboxymethylcellulose.
- Keywords
- глицидилакрилат карбоксиметилцеллюлоза сорбция ионы тяжелых металлов
- Date of publication
- 30.01.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 30
References
- 1. van der Perk M. // Soil and Water Contamination (2nd ed.). London: CRC Press, 2017. 428 р.
- 2. Tamez C., Hernandez R., Parsons. J.G. // Microchem. J. 2016. V. 125. P. 97. https://doi.org/10.1016/j.microc.2015.10.028
- 3. Ntimbani R.N., Simate G.S., Ndlovu S. // J. Environ. Chem. Eng. 2015. V. 3. № 2. P. 1258. https://doi.org/10.1016/j.jece.2015.02.010
- 4. Martin-Lara M.A., Blazquez G., Calero M. et al. // Int. J. Miner. Process. 2016. V. 148. P. 72. https://doi.org/10.1016/j.minpro.2016.01.017
- 5. Ayala-Cabrera J.F., Trujillo-Rodriguez M.J., Pino V. et al. // Int. J. Environ. Anal. Chem. 2016. V. 96. № 2. P. 101. https://doi.org/10.1080/03067319.2015.1128538
- 6. Xu Z., Gao G., Pan B. et al. // Water Res. 2015. V. 87. P. 378. https://doi.org/10.1016/j.watres.2015.09.025
- 7. Bojic A.L., Bojic D., Andjelkovic T. // J. Hazard. Mater. 2009. V. 168. № 2. P. 813. https://doi.org/10.1016/j.jhazmat.2009.02.096
- 8. Duan L., Hu N., Wang T. et al. // Chem. Eng. Commun. 2016. V. 203. № 1. P. 28. https://doi.org/10.1080/00986445.2014.956735
- 9. Bailey S.E., Olin T.J., Bricka R.M., Adrian D.D. // Water Res. V. 33. № 11. P. 2469. https://doi.org/10.1016/s0043-1354 (98)00475-8
- 10. Altinisik A., Yurdakoc K. // Water Treat. 2015. V. 2. P. 994. https://doi.org/10.1080/19443994.20151091
- 11. Rao G.P., Lu C., Su F. // Sep. Purif. Technol. 2007. V. 58. P. 224. https://doi.org/10.1016/j.seppur.2006.12.006
- 12. Hu K., Wang K., Liu J., Dong Q. // Desalin. Water Treat. 2016. V. 57. № 10. P. 4606. https://doi.org/10.1080/19443994.2014.1001442
- 13. Pawar R.R., Lalhmunsiama A., Bajaj H., Lee S.-M. // J. Ind. Eng. Chem. 2016. V. 34. P. 213. https://doi.org/10.1016/j.jiec.2015.11.014
- 14. Sharma N., Tiwari A. // Desalin. Water Treat. 2016. V. 57. № 10. P. 4523. https://doi.org/10.1080/19443994.2014.991945
- 15. Cheung W., Ng J., Mckay G. // J. Chem. Technol. Biotechnol. 2003. V. 78. P. 562. https://doi.org/10.1002/jctb.836
- 16. Alshahateet S.F., Jiries A.G., Al-Trawneh S.A. et al. // Desalin. Water Treat. 2016. V. 57. № 10. P. 4512. https://doi.org/10.1080/19443994.2014.991762
- 17. Neagu V., Mikhalovsky. S. // J. Hazard. Mater. 2010. V. 183. № 1. P. 533. https://doi.org/10.1016/j.jhazmat.2010.07.057J
- 18. Rutkowska J., Kilian K., Pyrzynska K. // Eur. Polym. J. 2008. V. 44. № 7. P. 2108. https://doi.org/10.1016/j.eurpolymj.2008.04.009
- 19. Uguzdogan E., Denkbaş E.B., Kabasakal O.S. // J. Hazard. Mater. 2010. V. 177. № 1. P. 119. https://doi.org/10.1016/j.jhazmat.2009.12.004
- 20. El-Sakhawy M., Kamel S., Salama A., Sarhan H.-A. // J. Drug. Deliv. 2014. V. 2014. Article ID575969. https://doi.org/10.1155/2014/575969
- 21. Lawniczak J.E., Posey-Dowty J., Seo K.S., Walker K. // Paint Coat. Ind. 2003. V. 19. № 6. P. 28.
- 22. Posey-Dowty J.D., Seo K.S., Walker K.R., Wilson A.K. // Surf. Coat. Int. Part B: Coat. Trans. 2002. V. 85. № 3. P. 203. https://doi.org/10.1007/BF02699510
- 23. McCreight K.W., Webster D.C., Kemp L.K. Patent US20050203278 A1 (2005).
- 24. Shelton M.C., Wilson A.K., Posey-Dowty J.D. et al. Patent EP 1603953 (2007).
- 25. Elwakeel K.Z., Rekaby M. // J. Hazard. Mater. 2011. V. 188. № 1–3. P. 10. https://doi.org/10.1016/j.jhazmat.2011.01.003
- 26. Sandic Z.P., Nastasovic A.B., Jovic-Jovicic N.P. et al. // J. Appl. Polym. Sci. 2011. V. 121. № 1. P. 234. https://doi.org/10.1002/app.33537
- 27. Chen C., Chiang C., Chen C.R. // Sep. Purif. Technol. 2007. V. 54. № 3. P. 396. https://doi.org/10.1016/j.seppur.2006.10.020
- 28. Liu C., Bai R., Hong L., Liu T. // J. Colloid. Interface Sci. 2010. V. 345. № 2. P. 454. https://doi.org/10.1016/j.jcis.2010.01.057
- 29. Евдокимов А.Н., Курзин А.В., Липин В.А. и др. // Бутлеровские сообщения. 2023. Т. 76. № 12. C. 167. https://doi.org/10.37952/ROI-jbc01/23-76-12-167
- 30. Филиппов Д.В., Фуфаева В.А., Шепелев М.В. // Журн. неорган. химии. 2022. Т. 67. № 3. С. 397. https://doi.org/10.31857/S0044457X22030084
- 31. Filippov D.V., Fufaeva V.A., Shepelev M.V. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. Р. 375. https://doi.org/10.1134/S0036023622030081
- 32. Farah A., Razak A.S., Zularisam A.W. et al. // Cleaner Waste Systems. 2022. V. 3. Article ID100051. https://doi.org/10.1016/j.clwas.2022.100051
- 33. Itodo A.U., Itodo H.U. // Life Sci. J. 2010. V. 7. № 4. P. 31. https://doi.org/10.7537/marslsj070410.05
- 34. Hsieh C.-T., Teng H. // J. Chem. Technol. Biotechnоl. 2000. V. 75. № 11. Р. 1066. https://doi.org/10.1002/1097-4660 (200011)75:113.0.co;2-z
- 35. Зеленцов В.И., Дацко Т.Я. // ЭОМ. 2012. Т. 48. № 6. С. 65.
- 36. Salehi R., Dadashian F., Ekrami E. // J. Photochem. Photobiol. B. 2018. V. 11. Р. 9. https://doi.org/10.1016/j.jphotobiol.2016.10.012
- 37. Швыдко А.В., Тимофеева М.Н., Симонов П.А. // Сорбционные и хроматографические процессы. 2021. Т. 21. № 1. С. 42. https://doi.org/10.17308/sorpchrom.2021.21/3218
- 38. Almalike L.B. // Int. J. Adv. Res. Chem. Sci. 2017. V. 4. № 5. P. 9. https://doi.org/10.20431/2349–0403.0405002
- 39. Johnson R.D., Arnold F.H. // Biochim. Biophys. Acta. 1995. V. 1247. № 2. Р. 293. https://doi.org/10.1016/0167-4838 (95)00006-g
- 40. Jakubov T.S., Mainwaring. D.E. // J. Colloid. Interface Sci. 2002. V. 252. № 2. P. 263. https://doi.org/10.1006/jcis.2002.8498
- 41. Wu K., Wang Y., Hwu W. // Polym. Degrad. Stab. 2003. V. 79. № 2. P. 195. https://doi.org/10.1016/s0141-3910 (02)00261-6
- 42. Hasanzadeh R., Moghadam P.N., Bahri-Laleh N., Zare E.N. // Int. J. Polym. Sci. 2016. Article ID2610541. https://doi.org/10.1155/2016/2610541
- 43. Liu C., Bai R., Ly Q.S. // Water Res. 2008. V. 42. № 6–7. P. 1511. https://doi.org/10.1016/j.watres.2007.10.031