RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

HEAT CAPACITY AND THERMODYNAMIC PROPERTIES OF MOMETASONE FUROATE

PII
S3034553725080041-1
DOI
10.7868/S3034553725080041
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 8
Pages
1154-1162
Abstract
The temperature dependence of the heat capacity of mometasone furoate in the range from 6 to 500 K was determined by adiabatic vacuum calorimetry and differential scanning calorimetry for the first time. Standard thermodynamic functions of crystalline mometasone furoate were determined: heat capacity C(T), enthalpy [H(T) – H(0)], entropy S(T) Gibbs function [G(T) – H(0)] for the temperature range from T → 0 to 490 K. A regularity between the Debye temperature and the composition of steroid hormones was revealed.
Keywords
момегазона фуроат стероидные гормоны изобарная теплоемкость температура Дебая термодинамические функции
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
31

References

  1. 1. Glucocorticoid Hormone Action / Ed. by J.D. Baxter, G.G. Rousseau. Springer: Heidelberg, 1979. 640 p.
  2. 2. Glucocorticoids: Effects, Action Mechanisms, and Therapeutic Uses / Ed. by A.C. Pelt. Nova Science Publishers, Inc.: Haupnauge, New York, 2011. 250 p.
  3. 3. Moss G.P. // Pure Appl. Chem. 1989. V. 61. P. 1783.
  4. 4. Buttgereit F., Straub R.H., Wehling M. et al. // Arthritis Rheumatol. 2004. V. 50. P. 3408.
  5. 5. Kavanaugh A., Wells A.F. // Rheumatology (Oxford). 2014. V. 53. P. 1742.
  6. 6. Hardy R.S., Raza K., Cooper M.S. // Nat. Rev. Rheumatol. 2020. V. 16. P. 133.
  7. 7. Barnes P.J. // Clin. Sci. 1998. V. 94. P. 557.
  8. 8. Coutinho A.E., Chapman K.E. // Mol. Cell. Endocrinol. 2011. V. 335. P. 2.
  9. 9. Barnes P.J. // Br.J. Pharmacol. 2011. V. 163. P. 29.
  10. 10. Timmermans S., Souffriau J., Libert C. // Front. Immunol. 2019. V. 10. P. 1545.
  11. 11. Борисова Е.О. // Лечебное дело. 2007. № 3. C. 17.
  12. 12. Knyazev A.V., Smirnova N.N., Shipilova A.S. et al. // J. Therm. Anal. Calorim. 2016. V. 123. P. 2201.
  13. 13. Knyazev A.V., Emel’yanenko V.N., Smirnova N.N. et al. // J. Chem. Thermodyn. 2016. V. 103. P. 244.
  14. 14. Knyazev A.V., Emel’yanenko V.N., Smirnova N.N. et al. // Ibid. 2017. V. 107. P. 37.
  15. 15. Knyazev A.V., Somov N.V., Shipilova A.S. et al. // J. Mol. Struct. 2017. V. 1141. P. 164.
  16. 16. Knyazev A.V., Somov N.V., Gusarova E.V. et al. // J. Chem. Cryst. 2023. V. 53. P. 152.
  17. 17. Knyazev A.V., Smirnova N.N., Stepanova et al. // Russ. J. Phys. Chem. A. 2024. V. 98. № 9. P. 1895.
  18. 18. Sarmini Yu.A., Sologubov S.S., Smirnova N.N. et al. // Ibid. 2024. V. 98. № 14. P. 3370.
  19. 19. Chen X., Carillo M., Curtis Haltiwanger R. et al. // J. Pharm. Sci. 2005. V. 94. P. 2496.
  20. 20. Varushchenko R.M., Druzhinin A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. P. 623.
  21. 21. Малышев В.М., Мильнер Г.А., Соркин Е.Л. и др. // Приб. техн. экспеp. 1985. № 6. C. 195.
  22. 22. Sabbah R., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331. P. 93.
  23. 23. Уэндландт У. Терические методы анализа. М.: Мир, 1978. 527 с.
  24. 24. Höhne G.W.H., Hemminger W.F., Flammersheim H.-J. Differential Scanning Calorimetry. Springer: Heidelberg, Germany, 2003. 310 p.
  25. 25. Debye P. // Ann. Phys. 1912. V. 344. P. 789.
  26. 26. CODATA Key Values for Thermodynamics. Cox, J.D.; Wagman, D.D.; Medvedev, V.A.: editors. Hemisphere: New York, 1989.
  27. 27. Lebedev B.V. // Thermochim. Acta. 1997. V. 297. P. 143.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library