RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

THE EFFECT OF ACIDITY OF THE MEDIUM ON THE STRUCTURE NILE RED

PII
S3034553725080076-1
DOI
10.7868/S3034553725080076
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 8
Pages
1179-1190
Abstract
The change in the structure of Nile red when treated with acids of different strength: acetic, formic and hydrochloric acids was studied by IR spectroscopy. In the IR spectra of the dye dried after treatment with formic and hydrochloric acids, the appearance of absorption spectra corresponding to shaft vibrations of N—H-bonds of tertiary amines and O—H-bonds of hydroxyl groups was recorded. In the IR spectra of the dye dissolved in acetic and formic acids, the appearance of the absorption spectra of O—H-bonds of hydroxyl groups is predominantly traced. Thus, it was found that the most probably protonation centers in the molecule of Nile red are the amino group and carbonyl group. Analysis of UV-visible spectra of the dye in acetic and formic acid and in DMSO showed that in acetic acid Nile red probably exists mainly in the non-protonated form, and in stronger formic acid a significant part of its molecules is protonated, which is accompanied by a complication of the form of the spectrum.
Keywords
нильский красный кислая среда протонирование изменение структуры ИК-спектроскопия УФ-видимая спектроскопия
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
29

References

  1. 1. Deye J.F., Berger T.A., Anderson A.G. // Anal. Chem. 1990. V. 62. № 6. P. 615. DOI: https://doi.org/10.1021/ac00205a015
  2. 2. Martinez V., Henary M. // Chem. 2016. V. 22. № 39. P. 13764. DOI: https://doi.org/10.1002/chem.201601570
  3. 3. Guido C.A., Memucci B., Jacquemin D., Adamo C. // Phys. Chem. Chem. Phys. 2010. V. 12. № 28. P. 8016. DOI: https://doi.org/10.1039/B927489H
  4. 4. W. Ogihara, T. Aoyama, H. Ohno // Chem. Lett. 2004. V. 33. № 11. P. 1414. DOI: https://doi.org/10.1246/cl.2004.1414
  5. 5. Zhang M., Zhao X., Tang S. et al. // J. of Mol. Struct. 2023. V. 1273. P. 134283. DOI: https://doi.org/10.1016/j.molstruc.2022.134283
  6. 6. Dwamena A.K., Raynie D.E. // J. Chem. Eng. Data. 2020. V. 65. № 2. P. 640–646. DOI: https://doi.org/10.1021/acs.jced.9b00872
  7. 7. Reichardt C. // Chem. rev. 1994. V. 94. № 8. P. 2319. DOI: https://doi.org/10.1021/cr00032a005
  8. 8. Selivanov N.I., Samsonova L.G., Artyukhov V.Y., Kopylova T.N. // Rus. Phys. J. 2011. V. 54. № 5. P. 601. DOI: https://doi.org/10.1007/s11182-011-9658-4
  9. 9. Millán D., González-Turen F., Perez-Recabarren J. // Int. J. Biol. Macromol. 2022. V. 211. P. 490. DOI: https://doi.org/10.1016/j.ijbiomac.2022.05.030
  10. 10. Simamora A., Timotius K.H., Setiawan H. // Mol. 2024. V. 29. № . 9. P. 2093. DOI: https://doi.org/10.3390/molecules29092093
  11. 11. Nieckarz R.J., Oomens J., Berden G. et al. // Phys. Chem. Chem. Phys. 2013. V. 15. № 14. P. 5049. DOI: https://doi.org/10.1039/C3CP00158J
  12. 12. Smith B. // Spectr. 2021. V. 36. № 5. P. 14.
  13. 13. Max J.J., Trudel M., Chapados C. // Appl. spectr. 1998. V. 52. № 2. P. 234. DOI: https://doi.org/10.1366/0003702981943293
  14. 14. Nile red ATR-IR spectrum / Sigma-Aldrich // SpectraBase. URL: https://spectrabase.com/spectrum/2ojISFgE8Se
  15. 15. Гордон А., Форд Р. Спутник химика: Физико-химические свойства, методики библиография. М.: Мир, 1976. 541 с.
  16. 16. Сильверстейн Р., Вебстер Ф., Кимл Д. Спектрометрическая идентификация органических соединений. М.: БИНОМ. Лаборатория знаний, 2014. 557 с.
  17. 17. Socrates, G. Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons, 2004. 347 p.
  18. 18. Stužka V., Šimánek V., Stránsky Z. // Spectrochim. Acta A: Molecular Spectroscopy. 1967. V. 23. № 7. P. 2175. DOI: https://doi.org/10.1016/0584-8539 (67)80104-1
  19. 19. Nile blue A ATR-IR spectrum / Sigma-Aldrich // SpectraBase. URL: https://spectrabase.com/spectrum/EuAWivLfScO
  20. 20. Lide D.R., Handbook of Chemistry and Physics: a Ready-reference Book of Chemical and Physical Data. 97th edition. CRC press, 2017. 2643 p.
  21. 21. Trummal A., Lipping L., Kaljurand I. et al. // J. Phys. Chem. A. V. 120. № 20. P. 3663–3669. DOI: https://doi.org/10.1021/acs.jpca.6b02253
  22. 22. Minó A., Cinelli G., Lope, F., Ambrosone L. // Appl. Sci. 2023. V. 13. № 1. P. 638. DOI: https://doi.org/10.3390/app13010638
  23. 23. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. М.: Мир; БИНОМ. Лаборатория знаний, 2006. 438 с.
  24. 24. Берштейн Н.Я., Каминский Ю.Л. Спектрофотометрический анализ в органической химии. Ленинград: Химия, 1986. 200 с.
  25. 25. Райхард К. Растворители и эффекты среды в органической химии. М.: Мир, 1991. 763 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library