RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Crystal Structure and Properties of Complex Oxides (Nd,Ba)(Co,Fe)O3–δ

PII
10.31857/S0044453722120020-1
DOI
10.31857/S0044453722120020
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 1
Pages
101-111
Abstract
The homogeneity ranges and crystal structure of solid solutions of Nd1−x1BaxCo1−y1FeyO3−δ3 composition were detected. Depending on introduced barium concentration Nd1−x1BaxCo1−y1FeyO3−δ3 oxides have been crystallized in the orthorhombically distorted (x = 0.05, sp. gr. Pbnm), cubic (0.6 ≤ x ≤ 0.9, sp. gr. Pm-3m) perovskite structure or double perovskite structure NdBaCo2−x2FexO5+δ5 (0.0 ≤ x ≤ 1.4, sp. gr. P4/mmm). The dependencies of unit cell parameters versus composition of the Nd1−x1BaxCo1−y1FeyO3−δ3 solid solutions were obtained. It is shown that the values of oxygen nonstoichiometry in Nd1−x1BaxCo1−y1FeyO3−δ3, determined by a thermogravimetric method within the temperature range 298–1373 K in air, increased with the raise of barium and cobalt content. Average values of thermal expansion coefficients for the Nd1−x1BaxCo1−y1FeyO3−δ3 oxides (0.8 ≤ x ≤ 0.9 and 0.7 ≤ y ≤ 0.9) visibly increased with temperature from (13.5–14.5) × 10–6 K–1 at 300–700 K up to (23.2–26.2) × 10–6 K–1 at 700–1373 K.
Keywords
сложные оксиды рентгенофазовый анализ кристаллическая структура термогравиметрия кислородная нестехиометрия термическое расширение
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Maignan A., Martin C., Pelloquin D. et al. // J. Solid State Chem. 1999. V. 142. P. 247.
  2. 2. Anderson P.S., Kirk C.A., Knudsen J. et al. // Solid State Sci. 2005. V. 7. P. 1149.
  3. 3. Pralong V., Caignaert V., Herbert S. et al. // Solid State Ionics. 2006. V. 177. P. 1879.
  4. 4. Аксенова Т.В., Гаврилова Л.Я., Цветков Д.С. и др. // Журн. физ. химии. 2011. Т. 85. № 3. С. 493.
  5. 5. Kim J.H., Manthiram A. // J. Electrochem. Soc. 2008. V. 155. P. B385.
  6. 6. Jarry A., Luetkens H., Pashkevich Y.G. et al. // Phys. B. 2009. V. 404. P. 765.
  7. 7. Zhao L., He B., Zhiqin X. et al. // Int. J. Hydrogen Energy. 2010. V. 35. P. 753.
  8. 8. Burley J.C., Mitchel J.F., Short S. et al. // J. Solid State Chem. 2003. V. 170. P. 339.
  9. 9. Donazzi A., Pelosato R., Cordaro G. et al. // Electrochim. Acta. 2015. V. 182. P. 573.
  10. 10. Karen P., Woodward P.M. // J. Mater. Chem. 1999. V. 9. P. 789.
  11. 11. Karen P., Woodward P.M., Santhosh P.N. et al // J. Solid State Chem. 2002. V. 167. P. 480.
  12. 12. Kim Y.N., Kim J.-H., Manthiram A. // J. Power Sources. 2010. V. 195. P. 6411.
  13. 13. Tsvetkov D.S., Ivanov I.L., Zuev A.Yu. // J. Solid State Chem. 2013. V. 199. P. 154.
  14. 14. Volkova N.E., Gavrilova L.Ya., Cherepanov V.A. et al. // Ibid. 2013. V. 204. P. 219.
  15. 15. Cherepanov V.A., Aksenova T.V., Gavrilova L.Ya. et al. // Solid State Ionics. 2011. V. 188. P. 53.
  16. 16. Yan J., Jiang Sh., Song T. et al. // Biomass and Bioener. 2021. V.151. P. 106154.
  17. 17. Sun L., Qin H., Wang K. et al. // Mater. Chem. Phys. 2011. V. 125. P. 305.
  18. 18. Волкова Н.Е., Урусова А.С., Гаврилова Л.Я. и др. // Журн. общ. химии. 2016. Т. 86. № 8. С. 1258.
  19. 19. Kundu A.K., Mychinko M.Yu., Caignaert V. et al. // J. Solid State Chem. 2015. V. 231. P. 36.
  20. 20. Volkova N.E., Lebedev O.I., Gavrilova L.Ya. et al. // Chem. Mater. 2014. V. 26. № 21. P. 6303.
  21. 21. Kundu A.K., Lebedev O.I., Volkova N.E. et al. // J. Mater. Chem. C. 2015. V. 3. № 21. P. 5398.
  22. 22. Aksenova T.V., Volkova N.E., Maignan A., Cherepanov V.A. // J. Am. Cer. Soc. 2022. V. 105. № 5. P. 3601.
  23. 23. Jiang L., Li F., Wei T. et al. // Electrochim. Acta. 2014. V. 133. P. 364.
  24. 24. Sun J., Liu X., Han F. et al. // Solid State Ionics. 2016. V. 288. P. 54.
  25. 25. Yi K., Sun L., Li Q. et al. // Int. J. Hydrogen Energy. 2016. V. 41. P. 10228.
  26. 26. Meng F., Xia T., Wang J. et al. // J. Power Sources. 2015. V. 293. P. 741.
  27. 27. Jiang X., Xu Q., Shi Y. et al. // J. Power Sources. 2014. V. 39. P. 10817.
  28. 28. Dong F., Ni M., Chen Y. et al. // J. Mater. Chem. A 2014. V. 2. P. 20520.
  29. 29. Аксенова Т.В., Элкалаши Ш.И., Урусова А.С., Черепанов В.А. // Журн. неорган. химии. 2017. Т. 62. № 8. С. 1092.
  30. 30. Knížek K., Hejtmánek J., Jirák Z. et al. // Phys. Rev. B. 2009. V. 79. P. 134103.
  31. 31. Scherrer B., Harvey A.S., Tanasescu S. et al. // Phys. Rev. B. 2011. V. 84. P. 085113.
  32. 32. Raccah P.M., Goodenough J.B. // Phys. Rev. 1967. V. 155. № 3. P. 932.
  33. 33. Shannon R.D. // Acta Cryst. A. 1976. V. 32. № 5. P. 751.
  34. 34. Volkova N.E., Bazueva M.V., Aisarinova D.T. et al. // J. Alloys Compd. 2021. V. 860. P. 158438.
  35. 35. Gavrilova L.Ya., Aksenova T.V., Volkova N.E. et al. // J. Solid State Chem. 2011. V. 184. P. 2083.
  36. 36. Lide D.R. CRC Handbook of Chemistry and Physics, 87th edition, Taylor and Francis, CRC Press, 2007.
  37. 37. Elkalashy Sh.I., Aksenova T.V., Urusova A.S., Cherepanov V.A. // Solid State Ionics. 2016. V. 295. P. 96.
  38. 38. Elkalashy Sh.I., Gilev A.R., Aksenova T.V. et al. // Ibid. 2018. V. 316. P. 85.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library