- PII
- 10.31857/S0044453723010119-1
- DOI
- 10.31857/S0044453723010119
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 97 / Issue number 1
- Pages
- 81-88
- Abstract
- Values of kinematic viscosity and density are determined for water–acetone–methyl ethyl ketone solutions for the first time in the region of high contents of water and the 20–40°C range of temperatures. Results are used to calculate the molar kinematic viscosity (νm), the Gibbs energy of viscous flow activation (ΔG≠νΔ), and the entropy of viscous flow activation. The viscometric characteristics of this system are compared to those of water–ethanol–acetone, water–2-propanol–acetone, and water–2-butanol–acetone systems studied earlier. Dependences on the concentration of one organic component at a fixed content of a second are presented for different properties. The viscometric parameters of ternary solutions with methyl ethyl ketone, calculated based on size/molecular weight of the components (νm and ΔG≠νΔ), are close to those obtained for solutions with ethanol but notably higher for solutions with 2-propanol and 2-butanol. It is concluded that molecules participating in the formation of intermolecular hydrogen bonds as proton donors (alcohols) raises viscosity more than an increase in size/mass (methyl ethyl ketone). Different ways of calculating the entropy of viscous flow activation (ΔS≠νΔ) are compared on the basis of literature data. It is found that ΔS≠νΔ is higher than that of water in the studied range of concentrations of the ternary water–acetone–methyl ethyl ketone system, which is also typical of other aqueous solutions.
- Keywords
- тернарная система вязкость энергия Гиббса активации вязкого течения энтропия активации вязкого течения межмолекулярные водородные связи
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Viswanath D.S., Ghosh T.K., Prasad D.H.L. et al. Viscosity of Liquids. Theory, Estimation, Experiment, and Data. Springer, 2007. XIV, 662 p. https://doi.org/10.1007/978-1-4020-5482-2
- 2. Baas J., Schotten M., Plume A. et al. // Quant. Sci. Stud. 2020. V. 1. № 1. P. 377. https://doi.org/10.1162/qss_a_00019
- 3. Kincaid J.F., Eyring H., Stearn A.E. // Chem. Rev. 1941. V. 28. № 2. P. 301. https://doi.org/10.1021/cr60090a005
- 4. Глесстон С., Лейдер К., Эйринг Г. Теория абсолютных скоростей реакций. М.: Изд-во иностр. лит., 1948. 583 с.
- 5. Гринева О.В., Кораблева Е.Ю. // Журн. физ. химии. 1998. Т. 72. № 4. С. 657. (Grineva O.V., Korableva E.Yu. // Russ. J. Phys. Chem. A. 1998. V. 72. № 4. P. 567.)
- 6. Дакар Г.М. // Журн. физ. химии. 2001. Т. 75. № 4. С. 656. (Dakar G.M. // Russ. J. Phys. Chem. A. 2001. V. 75. № 4. P. 576.)
- 7. Дакар Г.М., Гринева О.В. // Там же. 2002. Т. 76. № 5. С. 862. (Dakar G.M., Grineva O.V. // Russ. J. Phys. Chem. A. 2002. V. 76. № 5. P. 761.)
- 8. Дакар Г.М., Гринева О.В. // Там же. 2002. Т. 76. № 11. С. 1945. (Dakar G.M., Grineva O.V. // Russ. J. Phys. Chem. A. 2002. V. 76. № 11. P. 1764.)
- 9. Гринева О.В., Абрамович А.И. // Там же. 2004. Т. 78. № 7. С. 1181. (Grineva O.V., Abramovich A.I. // Russ. J. Phys. Chem. A. 2004. V. 78. № 7. P. 1024.)
- 10. CRC Handbook of Chemistry and Physics 90th Edition / Ed. by D.R. Lide. Boca Raton, FL: CRC Press, Taylor and Francis, 2010.
- 11. Othmer D.F., Chudgar M.M., Sherman Levy S.L. // Ind. Eng. Chem. 1952. V. 44. № 8. P. 1872.
- 12. Faranda S., Foca G., Marchetti A. et al. // J. Solut. Chem. 2004. V. 33. № 10. P. 1181. https://doi.org/10.1007/s10953-004-7135-1
- 13. Mączyński A., Shaw D.G., Góral M., Wiśniewska-Gocłowska B. // J. Phys. Chem. Ref. Data. 2008. V. 37. № 3. P. 1517.
- 14. Ma D., Zhu C., Fu T. et al. // J. Chem. Thermodyn. 2019. V. 138. P. 350. https://doi.org/10.1016/j.jct.2019.06.032
- 15. Основы физической химии. Теория и задачи: учеб. пособие для вузов / В.В. Еремин, С.И. Каргов, И.А. Успенская, Н.Е. Кузьменко, В.В. Лунин. М.: Изд-во “Экзамен”, 2005. 480 с.
- 16. Афанасьев В.Н., Крестов Г.А. // Докл. АН СССР. 1983. Т. 269. № 3. С. 620.