RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Thermodynamic Modeling of the Bi–Ga–Zn System

PII
10.31857/S004445372301020X-1
DOI
10.31857/S004445372301020X
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 1
Pages
139-143
Abstract
Experimental data are used to build a thermodynamic model for the liquid phase of the Bi–Ga–Zn system. The model and those of other phases are used to determine coordinates of the invariant points of the Bi–Ga–Zn system and the projection of its liquidus surface. The polythermal cross-section of the system’s phase diagram is calculated for compositions xBi/xZn = 1, along with the isothermal cross section at 573 K.
Keywords
система Bi–Ga–Zn фазовые диаграммы термодинамическое моделирование
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Wang Q., Cheng X., Li Y. et al. // J. Wuhan Univ. Technol. Mater. Sci. Edition 2019. V. 34. № 3. P. 676.
  2. 2. Wang Q., Cheng X., Liu Z. et al. // Materials. 2020. V. 13. № 23. P. 5461.
  3. 3. Lorenzin N., Abánades A. // Int. J. Hydrogen Energy. 2016. V. 41. № 17. P. 6990.
  4. 4. Гусакова О.В., Шепелевич В.Г. // Журн. белорус. гос. универ. Эколог. 2020. № 4. С. 79.
  5. 5. Gambino M., Bros J.-P. // J. Chim. Phys. 1980. V. 77. № 11–12. P. 1031.
  6. 6. Girard C., Baret R., Miane J.-M. et al. // Ibid. 1980. V. 77. № 11–12. P. 1037.
  7. 7. Minić D., Manasijević D., Živković D. et al. // Mater. Sci. Technol. 2011. V. 27. № 5. P. 884.
  8. 8. Malakhov D.V. // Calphad. 2000. V. 24. № 1. P. 1.
  9. 9. Vizdal J., Braga M.H., Kroupa A. et al. // Ibid. 2007. V. 31. № 4. P. 438.
  10. 10. Dutkiewicz J., Moser Z., Zabdyr L. et al. // Bull. Alloy Ph. Diagr. 1990. V. 11. № 1. P. 77.
  11. 11. Manasijević D., Minić D., Živković D. et al. // J. Phys. Chem. Solids. 2009. V. 70. № 9. P. 1267.
  12. 12. Okamoto H. // J. Phase Equilib. Diff. 2015. V. 36. № 3. P. 292.
  13. 13. Minić D., Premović M., Manasijević D. et al. // J. Alloys Compd. 2015. V. 646. P. 461.
  14. 14. Terlicka S., Debski A., Gasior W., Debski R. // J. Chem. Thermodyn. 2016. V. 102. P. 341.
  15. 15. Girard C., Bros J.P., Agren J., Kaufman L. // Calphad. 1985. V. 9. № 2. P. 129.
  16. 16. Wang Z.C., Yu S.K., Sommer F. // J. Chim. Phys. Phys.-Chim. Biol. 1993. V. 90. P. 379.
  17. 17. Dinsdale A.T. // Calphad. 1991. V. 15. № 4. P. 317.
  18. 18. Redlich O., Kister A.T. // Ind. Eng. Chem. 1948. V. 40. № 2. P. 345.
  19. 19. Лысенко В.А. // Журн. физ. химии. 2008. Т. 82. № 8. С. 1413.; Lysenko V.A. // Russ. J. Phys. Chem. A. 2008. V. 82. № 8. P. 1252.
  20. 20. Vassiliev V.P., Lysenko V.A. // J. Alloys Compd. 2016. V. 681. P. 606.
  21. 21. Реклейтис Г., Рейвиндран А., Рэгсдел К. Оптимизация в технике. Т. 1. М.: Мир, 1986. 349 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library