RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Temperature Dependence of Direct Current Conductivity in TiO2/Epoxy Polymer Dielectric Nanocomposites

PII
10.31857/S0044453723010260-1
DOI
10.31857/S0044453723010260
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 1
Pages
121-127
Abstract
A study is performed of the effect TiO2 nanoparticles have on the temperature dependence of the direct current conductivity of epoxy polymers. The value of direct current conductivity is determined by analyzing the frequency dependence of the complex permittivity in the 102–105 Hz range of frequencies. Two characteristic regions are found on the temperature dependence of direct current conductivity: the Vogel–Fulcher–Tammann dependence above the glass transition temperature (Tg), and the Arrhenius dependence below Tg, due apparently to a change in the mechanism of conduction after the freezing of ionic mobility at temperatures
Keywords
эпоксидный нанокомпозит наночастицы TiO<sub>2</sub> сквозная проводимость широкополосная диэлектрическая спектроскопия
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Chu B., Zhou X., Ren K. et al. // Sci. 2006. V. 313. P. 334. https://doi.org/10.1126/science.1127798
  2. 2. Prateek, Thakur V.K., Gupta R.K. // Chem. Rev. 2016. V. 116. P. 4260. https://doi.org/10.1021/acs.chemrev.5b00495
  3. 3. Huang X., Jiang P., Xie L. // Appl. Phys. Lett. 2009. V. 95. P. 242901. https://doi.org/10.1063/1.3273368
  4. 4. Xie L.Y., Huang X.Y., Wu C. et al. // Journal of Materials Chemistry. 2011. V. 21. № 16. P. 5897. https://doi.org/10.1039/c0jm04574h
  5. 5. Luo H., Chen C., Zhou K. et al. // RSC Advances. 2015. V. 5. № 84. P. 68515. https://doi.org/10.1039/c5ra11753d
  6. 6. ahimabady M., Mirshekarloo M.S., Yao K. et al. // Physical Chemistry Chemical Physics. 2013. V. 15. № 38. P. 16242. 10.1039/c3cp52267
  7. 7. Ioannou G., Patsidis A., Psarras G.C. // Composites Part A: Applied Science and Manufacturing. 2011. V. 42. № 1. P. 104. https://doi.org/10.1016/j.compositesa.2010.10.010
  8. 8. Patsidis A., Psarras G.C. // ExP. Polym. Lett. 2008. V. 2. № 10. P. 718. https://doi.org/10.3144/expresspolymlett.2008.85
  9. 9. Wang J., Liu S., Wang J. et al. // Journal of Alloys and Compounds. 2017. V. 726. P. 587. https://doi.org/10.1016/j.jallcom.2017.07.341
  10. 10. Hu P., Wang J., Shen Y. et al. // Journal of Materials Chemistry A. 2013. V. 1. № 39. P. 12321. https://doi.org/10.1039/c3ta11886j
  11. 11. Kim J.Y., Jung H.S., No J.H. et al. // Journal of Electroceramics. 2006. V. 16. № 4. P. 447. https://doi.org/10.1007/s10832-006-9895-z
  12. 12. Homes C.C., Vogt T. // Nature Materials. 2013. V. 12. № 9. P. 782. https://doi.org/10.1038/nmat3744
  13. 13. Noman M.T., Ashraf M.A., Ali A. // Environmental Science and Pollution Research. 2019. V. 26. P. 3262. https://doi.org/10.1007/s11356-018-3884-z
  14. 14. Kontos G.A., Soulintzis A.L., Karahaliou P.K. et al. // ExP.Polym. Lett. 2007. V. 1. № 12. P. 781. https://doi.org/10.3144/expresspolymlett.2007.108
  15. 15. Tomara G.N., Kerasidou A.P., Patsidis A.C. et al. // Composites Part A: Applied Science and Manufacturing. 2015. V. 71. P. 204. https://doi.org/10.1016/j.compositesa.2015.017
  16. 16. Parker R.A. // Phys. Rev. 1961. V. 124. № 6. P. 1719. https://doi.org/10.1103/physrev.124.1719
  17. 17. Yu E., Zhang Q., Xu N. et al. // RSC Advances. 2017. V. 7. № 7. P. 3949. https://doi.org/10.1039/c6ra26772f
  18. 18. Guo R., Luo H., Liu W. et al. // Physical Chemistry Chemical Physics. 2018. V. 20. № 26. P. 18031. https://doi.org/10.1039/c8cp02958j
  19. 19. Basu R., Iannacchione G.S. // Journal of Applied Physics. 2008. V. 104. № 11. P. 114107. https://doi.org/10.1063/1.3035963
  20. 20. Dang Z., Shen Y., Fan L. et al. // J. Appl. Phys. 2003. V. 93. № 9. P. 5543. https://doi.org/10.1063/1.1562740
  21. 21. Su R., Luo Z., Zhang D. et al. // J. Phys. Chem. C. 2016. V. 120. № 22. P. 11769. https://doi.org/10.1021/acs.jpcc.6b01853
  22. 22. Dang Z.M., Yuan J.K., Zha J.W. et al. // Progress in Materials Science. 2013. V. 57. № 4. P. 660. https://doi.org/10.1016/j.pmatsci.2011.08.001
  23. 23. Xu N., Hu L., Zhang Q. et al. // ACS Applied Materials & Interfaces. 2015. V. 7. № 49. P. 27373. https://doi.org/10.1021/acsami.5b08987
  24. 24. Guo N., DiBenedetto S.A., Tewari P. et al. // Chemistry of Materials. 2010. V. 22. № 4. P. 1567. https://doi.org/10.1021/cm902852h
  25. 25. Khan M., Khurram A.A., Li T. et al. // Journal of Materials Science & Technology. 2018. V. 34. № 12. P. 2424. https://doi.org/10.1016/j.jmst.2018.06.014
  26. 26. Zha J.W., Song H.T., Dang Z.M. et al. // Applied Physics Letters. 2008. V. 93. № 19. P. 192911. https://doi.org/10.1063/1.3025408
  27. 27. Zhang Y.H., Dang Z.M., Xin J.H. et al. // Macromolecular Rapid Comm. 2005. V. 26. № 18. P. 1473. https://doi.org/10.1002/marc.200500310
  28. 28. Zha J.W., Dang Z.M., Zhou T. et al. // Synthetic Metals. 2010. V. 160. № 23. P. 2670. https://doi.org/10.1016/j.synthmet.2010.10.024
  29. 29. Берестенко В.И., Торбов В.И., Чукалин В.И. и др. // Химия высоких энергий. 2011. Т. 45. № 5. С. 468. https://www.elibrary.ru/item.asp?id=16766121
  30. 30. Букичев Ю.С., Богданова Л.М., Спирин М.Г. и др. // Вестн. Московского авиационного института. 2021. Т. 28. № 2. С. 224. https://doi.org/10.34759/vst-2021-2-224-237
  31. 31. Новиков Г.Ф., Рабенок Е.В., Эстрин Я.И. и др. // Журн. физ. химии. 2014. Т. 88. № 10. С. 1605. https://doi.org/10.7868/S004445371410029X
  32. 32. Novocontrol GmbH // WinFit 2.9 Owner’s Manual. 2000. № 12. P. 137.
  33. 33. Monai M., Montini T., Fornasiero P. // Catalysts. 2017. V. 7. № 10. P. 304. https://doi.org/10.3390/catal7100304
  34. 34. Nikonorova N.A., Barmatov E.B., Pebalk D.A. et al. // J. Phys. Chem. C. 2007. V. 111. № 24. P. 8451. https://doi.org/10.1021/jp068688a
  35. 35. Новиков Г.Ф., Рабенок Е.В., Богданова Л.М., Иржак В.И. // Журн. физ. химии. 2017. Т. 91. № 10. С. 1760. https://doi.org/10.7868/S0044453717100302
  36. 36. Новиков Г.Ф., Рабенок Е.В., Богданова Л.М. // Сборник трудов XVIII Международной конференции по химии и физикохимии олигомеров. Нижний Новгород, 2019. Т. 2. С. 74.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library