- PII
- 10.31857/S0044453723010399-1
- DOI
- 10.31857/S0044453723010399
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 97 / Issue number 1
- Pages
- 13-20
- Abstract
- Model structural mechanisms of transitions between crystalline water ices II → Ic, IV → Ic, and V → Ic are proposed. It is established that in the proposed II → Ic transition mechanism, one of the three systems of infinite parallel chains consisting of adjacent hexacycles and running along the 〈0001〉 direction of ice II is preserved, and these chains become parallel to one of the 〈211〉 directions of ice Ic. The proposed mechanism of the V → Ic transition preserves both systems of infinite parallel chains of adjacent hexacycles extended along the [101] and [10–1] directions of ice V; in ice Ic, they run along two directions 〈211〉 parallel to the same {120} plane. According to the proposed mechanism of the IV → Ic transition, puckered surfaces of hexacycles are retained. In all three cases, 3/4 of all hydrogen bonds are retained during the transition, and 1/4 of the bonds are rearranged. It is shown that the structures of ices II, IV, and V consist of the same structural element, which is slightly modified in ice V.
- Keywords
- кристаллические водные льды II IV и V фазовые переходы структурный механизм
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 8
References
- 1. Памяти Н.А. Бульенкова // Журн. физ. химии. 2022. Т. 96. № 6. С. 917.
- 2. Бульенков Н.А. // Биофизика. 1991. Т. 36. № 2. С. 181.
- 3. Бульенков Н.А. // Там же. 2005. Т. 50. № 5. С. 934.
- 4. Бульенков Н.А. // Кристаллография. 2011. Т. 56. № 4. С. 729.
- 5. Bulienkov N.A., Zheligovskaya E.A. // Struct. Chem. 2017. V. 28. № 1. P. 75. https://doi.org/10.1007/s11224-016-0837-3
- 6. Zheligovskaya E.A., Bulienkov N.A. // Physics of Wave Phenomena. 2021. V. 29. No. 2. P. 141. https://doi.org/10.3103/S1541308X21020163
- 7. Бульенков Н.А. // Докл. АН СССР. 1985. Т. 284. № 6. С. 1392. (Физическая химия)
- 8. Желиговская Е.А., Бульенков Н.А. // Кристаллография. 2008. Т. 53. № 6. С. 1126.
- 9. Желиговская Е.А., Маленков Г.Г. // Успехи химии. 2006. Т. 75. № 1. С. 64.
- 10. del Rosso L., Celli M., Grazzi F. et al. // Nature Materials. 2020. V. 19. P. 663. https://doi.org/10.1038/s41563-020-0606-y
- 11. Salzmann C.G. // J. Chem. Phys. 2019. V. 150. P. 060901 (1–10). https://doi.org/10.1063/1.5085163
- 12. Komatsu K., Machida S., Noritake F. et al. // Nature Communications. 2020. V. 11. P. 464 (1–5). https://doi.org/10.1038/s41467-020-14346-5
- 13. Желиговская Е.А. // Кристаллография. 2015. Т. 60. № 5. С. 779.
- 14. Kamb B. // Sci. 1965. V. 150. P. 205. https://doi.org/10.1126/science.150.3693.205
- 15. Kamb B. // Acta Cryst. 1964. V. 17. P. 1437. https://doi.org/10.1107/S0365110X64003553
- 16. Engelhardt H., Kamb B. // J. Chem. Phys. 1981. V. 75. P. 5887. https://doi.org/10.1063/1.442040
- 17. Kamb B., Prakash A., Knobler C. // Acta Cryst. 1967. V. 22. P. 706. https://doi.org/10.1107/S0365110X67001409