RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Selective Hydrogenation of Pyridine and Derivatives of It on Bimetallic Catalysts Modified with Chitosan

PII
10.31857/S0044453723020127-1
DOI
10.31857/S0044453723020127
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 2
Pages
223-226
Abstract
A study is performed of the catalytic properties of bimetallic nanoparticles based on palladium and a base metal (silver or copper) supported on alumina modified with chitosan in the selective hydrogenation of pyridine and derivatives of it with the formation of piperidine and derivatives of it. It is shown that the effect of increasing the activity of bimetallic nanoparticles is due to the small size of particles (2–3 nm), compared to the monometallic palladium catalyst. It is established that the conversion of pyridine reaches 99% with 99% selectivity toward piperidine under mild conditions (60°C; H2 pressure, 70 atm).
Keywords
гидрирование пиридина пиперидин палладий медь серебро биметаллические наночастицы гетерогенные катализаторы
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Beletskaya I.P., Kustov L.M. // Russ. Chem. Rev. 2010. V. 79 (6). P. 441.
  2. 2. Zeolites and Zeolite-like Materials. Ed. by B.F. Sels, L.M. Kustov. 2016. P. 1–459.
  3. 3. Kustov L.M., Beletskaya I.P. // Ross. Khim. Zhurnal (Zhurnal Rossijskogo Khimicheskogo Obshchestva Im. D.I. Mendeleeva) 2004. V. 48 (6). P. 3.
  4. 4. Shesterkina A.A., Kustov L.M., Strekalova A.A. et al. // Catal. Sci. Technol. 2020. V. 10 (10). P. 3160.
  5. 5. Chernikova E.A., Glukhov L.M., Krasovskiy V.G. et al. // Russ. Chem. Rev. 2015. V. 84 (8). P. 875.
  6. 6. Kalenchuk A.N., Bogdan V.I., Dunaev S.F. et al. // Fuel Proc. Technol. 2018. V. 169. P. 94.
  7. 7. Sung J.S., Choo K.Y., Kim T.H. et al. // Int. J. Hydrogen Energy 2008. V. 33 (11). P. 2721.
  8. 8. Kalenchuk A., Bogdan V., Dunaev S. et al. // Fuel 2020. V. 280. P. 118625.
  9. 9. Tarasov A.L., Isaeva V.I., Tkachenko O.P. et al. // Fuel Proc. Technol. 2018. V. 176. P. 101.
  10. 10. Tursunov O., Kustov L., Tilyabaev Z. // J. Petroleum Sci. Eng. 2019. V. 180. P. 773.
  11. 11. Redina E.A., Vikanova K.V., Kapustin G.I. et al. // Eur. J. Org. Chem. 2019. V. 2019 (26). P. 4159.
  12. 12. Tkachenko O.P., Kustov L.M., Nikolaev S.A. et al. // Topics Catal. 2009. V. 52 (4). P. 344.
  13. 13. Redina E., Greish A., Novikov R. et al. // Appl. Catal. A: General 2015. V. 491. P. 170.
  14. 14. Bykov A., Matveeva V., Sulman M. et al. // Catal. Today. 2009. V. 140 (1–2). P. 64.
  15. 15. Redina E.A., Kirichenko O.A., Greish A.A. et al. // Catal. Today. 2015. V. 246. P. 216.
  16. 16. Isaeva V.I., Tkachenko O.P., Afonina E.V. et al. // Micropor. Mesopor. Mater. 2013. V. 166. P. 167.
  17. 17. ulman E.M., Matveeva V.G., Doluda V.Yu. et al. // Appl. Catal. B: Environmental 2010. V. 94 (1–2). P. 200
  18. 18. Tursunov O., Kustov L., and Kustov A. // Oil and Gas Sci. Technol. 2017. V. 72 (5). P. 30.
  19. 19. Tursunov O., Kustov L., and Tilyabaev Z. // J. Taiwan Inst. Chem. Engineers 2017. V. 78. P. 416.
  20. 20. Chen F., Li W., Sahoo B. et al. // Angew. Chemie Int. Ed. 2018. V. 57 (44). P. 14488.
  21. 21. Kokane R., Corre Y., Kemnitz E. et al. // New J. Chem. 2021. V. 45. P. 19572.
  22. 22. Yu X., Nie R., Zhang H. et al. // Micropor. Mesopor. Mater. 2018. V. 256. P. 10.
  23. 23. Hattori T., Ida T., Tsubone A. et al. // Eur. J. Org. Chem. 2015. V. 2015 (11). P. 2492.
  24. 24. Beckers N.A., Huynh S., Zhang X. et al. // ACS Catal. 2012. V. 2 (8). P. 1524.
  25. 25. Buil M.L., Esteruelas M.A., Niembro S. et al. // Organometallics 2010. V. 29 (19). P. 4375.
  26. 26. Maegawa T., Akashi A., Yaguchi K. et al. // Chem. A. Eur. J. 2009. V. 15 (28). P. 6953.
  27. 27. Irfan M., Petricci E., Glasnov T.N. et al. // Eur. J. Org. Chem. 2009. V. 9. P. 1327.
  28. 28. Barwinski B., Migowski P., Gallou F. et al. // J. Flow Chem. 2017. V. 7 (2). P. 41.
  29. 29. Kirichenko O.A., Redina E.A., Davshan N.A. et al. // Appl. Catal. B: Environmental 2013. V. 134–135. P. 123.
  30. 30. Kustov L.M. // Russ. J. Phys. Chem A 2015. V. 89 (11). P. 2006.
  31. 31. Mamonov N.A., Fadeeva E.V., Grigoriev D.A. et al. // Russ. Chem. Rev. 2013. V. 82 (6). P. 567.
  32. 32. Kustov A.L., Tkachenko O.P., Kustov L.M. et al. // Environment Int. 2011. V. 37 (6). P. 1053.
  33. 33. Mikhailov M.N., Kustov L.M., and Kazansky V.B. // Catal. Lett. 2008. V. 120 (1–2). P. 8.
  34. 34. Ivanov A.V., Koklin A.E., Uvarova E.B. et al. // Phys. Chem. Chem. Phys. 2003. V. 5 (20). P. 4718–4723.
  35. 35. Kumar N., Masloboischikova O.V., Kustov L.M. et al. // Ultrasonics Sonochem. 2007. V. 14 (2). P. 122.
  36. 36. Ivanov A.V., Kustov L.M. // Ross. Khim. Zhurnal (Zhurnal Rossijskogo Khimicheskogo Obshchestva Im. D.I. Mendeleeva). 2000. V. 44 (2). P. 21.
  37. 37. Vorob'eva M.P., Greish A.A., Ivanov A.V. et al. // Appl. Catal. A: General. 2000. V. 199 (2). P. 257.
  38. 38. Khodakov A.Yu., Kustov L.M., Kazansky V.B. et al. // J. Chem. Soc. Faraday Trans., 1993. V. 89 (9). P. 1393.
  39. 39. Kanazirev V., Dimitrova R., Price G.L. et al. // J. Molec. Catal. 1991. V. 70 (1). P. 111.
  40. 40. Kramareva N.V., Stakheev A.Yu., Tkachenko O.P. et al. // J. Molec. Catal. A: Chemical. 2004. V. 209 (1–2). P. 97.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library