RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Adsorption of Cr(VI) by Nanosized Rutile under the Action of UV Radiation

PII
10.31857/S0044453723020206-1
DOI
10.31857/S0044453723020206
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 2
Pages
279-284
Abstract
the properties of nanosized sorbents prepared by high-energy milling from microcrystalline powder of titanium dioxide of rutile modification have been studied. It was established that milling to an average crystallite size of ~30 nm and ultraviolet illumination significantly improved the sorption properties of rutile with respect to chromium compared with those of the starting material and the ability of Cr(VI) to be reduced to Cr(III) in its presence. The maximum removal of Cr(VI) from aqueous solutions with a concentration of 50 mg/L was achieved under UV illumination in an acetate buffer medium at pH 4–5 and a content of ground rutile of 16.7 g/L. A mechanism of adsorption was proposed.
Keywords
: рутил хром(VI) ультрафиолет адсорбция
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Jegadeesan G., Al-Abed S.R., Sundaram V. et al. // Water Res. 2010. V. 44. P. 965. https://doi.org/10.1016/j.watres.2009.10.047
  2. 2. Kuz'micheva G.M., Savinkina E.V., Obolenskaya L.N. et al. // Crystallogr. Rep. 2010. V. 55. P. 866. https://doi.org/10.1134/S1063774510050287
  3. 3. Vidhya B., Ford A. // Nanosci. Nanotechnol. Lett. 2013. V. 5. P. 980. https://doi.org/10.1166/nnl.2013.1663
  4. 4. Uzunova-Bujnova M., Dimitrov D., Radev D. et al. // Mater. Chem. Phys. 2008. V. 110. P. 291. https://doi.org/10.1016/j.matchemphys.2008.02.005
  5. 5. Мельчакова О.В., Печищева Н.В., Коробицына А.Д. // Цветные металлы. 2019. № 1. С. 32. https://doi.org/10.17580/tsm.2019.01.05
  6. 6. Ординарцев Д.П., Печищева Н.В., Валеева А.А. и др. // Журн. физ. химии. 2022. Т. 96. № 11 – в печати.
  7. 7. Cheng Q., Wang C., Doudrick K. et al. // Appl. Catal. B. 2015. V. 176. P. 740. https://doi.org/10.1016/j.apcatb.2015.04.047
  8. 8. Ma C.M., Shen Y.S., Lin P.H. // Int. J. Photoenergy. 2012. 381971. https://doi.org/10.1155/2012/381971
  9. 9. Ku Y., Jung I.-L. // Wat. Res. 2001. V. 35. P. 135. https://doi.org/10.1016/s0043-1354 (00)00098-1
  10. 10. Zhang H., Bartlett R.J. // Environ. Sci. Technol. 1999. V. 33. P. 588. https://doi.org/10.1021/es980608w
  11. 11. Fendorf S.E. // Geoderma. 1995. V. 67. P. 55. https://doi.org/10.1016/0016-7061 (94)00062-f
  12. 12. Wang Y., Peng C., Padilla-Ortega E. et al. // J. Environ. Chem. Eng. 2020. 104031. https://doi.org/10.1016/j.jece.2020.104031
  13. 13. Zurek J.M., Paterson M.J. // J. Phys. Chem. A. 2012. V. 116. P. 5375. https://doi.org/10.1021/jp302300q
  14. 14. Kirk A.D. // Comments Inorg. Chem. 1993. V. 14. P. 89. https://doi.org/10.1080/02603599308048658
  15. 15. Morales-Pérez A.-A., García-Pérez R., Tabla-Vázquez C.-G. et al. // Topics in Catalysis. 2020. V. 64. P. 17. https://doi.org/10.1007/s11244-020-01346-4
  16. 16. Tan Y., Lim Y.B., Altieri K.E. et al. // Atmos. Chem. Phys. 2012. V. 12. P. 801. https://doi.org/10.5194/acp-12-801-2012
  17. 17. Moffat T.P., Latanision R.M., Ruf R.R. // Electrochim. Acta. 1995. V. 40. P. 1723. https://doi.org/10.1016/0013-4686 (95)00015-7
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library