RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Study of Heptane and Toluene Decomposition during High-Energy Processing in a Planetary Mill Together with Titanium Powder

PII
10.31857/S0044453723040039-1
DOI
10.31857/S0044453723040039
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 4
Pages
527-534
Abstract
Molecular spectroscopy in the UV and IR ranges is used to perform a comparative study of the decomposition of toluene and heptane during mechanical activation with titanium. It is shown that high-energy mechanical processing is effective for obtaining low-molecular-weight alkanes, the amounts of which are largely determined by the nature of the hydrocarbons. The effect the mill carrier’s speed of rotation has on the depth of hydrocarbon decomposition and the composition of products of the mechanical processing of the liquid phase is considered. It is shown that at a speed of 600 rpm, heptane begins to decompose at short periods of mechanical activation (MA), while toluene is stable up to 30 h MA. Considerable structural and chemical transformations occur in toluene after only 20–30 h of mechanical treatment at a speed of 890 rpm.
Keywords
гептан толуол разложение УФ-спектроскопия ИК-фурье-спектроскопия
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Механокомпозиты – прекурсоры для создания материалов с новыми свойствами. Отв. ред. О.И. Ломовский, Новосибирск: СО РАН, 2010, 424 с.
  2. 2. Baláž P. Mechanochemistry in nanoscience and minerals engineering. Springer: Berlin, Heidelberg, 2008. https://doi.org/10.1007/978-3-540-74855-7
  3. 3. Michalchuk A.A., Boldyreva E.V., Belenguer A.M., et al. // Front. Chem. 2021. V. 9. 685789. https://doi.org/10.3389/fchem.2021.685789
  4. 4. El-Eskandarany M.S. Mechanical Alloying: Energy, Surface Protective Coating and Medical Applications. 3rd ed.; Elsevier: Oxford, UK, 2020. https://www.elsevier.com/books/mechanical-alloying/el-eskandarany/978-0-12-818180-5.
  5. 5. Baláž M. Environmental Mechanochemistry. Recycling Waste into Materials Using High-Energy Ball Milling. Springer Cham, Switzerland, 2021. https://doi.org/10.1007/978-3-030-75224-8
  6. 6. Eze A.A., Sadiku E.R., Kupolati W.K. et al. // Sci. Rep. 2021. V. 11. 22422. https://doi.org/10.1038/s41598-021-01916-w
  7. 7. Musalat M., Schoenitz M., Dreizin E.L. // Adv. Powder Technol. 2019. V. 30. P. 1319. https://doi.org/10.1016/j.apt.2019.04.007
  8. 8. Arias A., Chemical reactions of metal powders with organic and inorganic liquids during ball milling, Washington, NASA TN, D-8015, 1975.
  9. 9. Yelsukov E.P., Barinov V.A., Ovetchkin L.V. // J. Mater. Sci. Lett. 1992. V. 11 (10). P. 662. https://doi.org/10.1007/BF00728898
  10. 10. Ullah M., Eaqub A.Md., Hamid S.B.A. // Rev. Adv. Mater. Sci. 2014. V. 37 (1). P. 1. https://ipme.ru/e-journals/RAMS/no_13714/01_13714_ali.pdf.
  11. 11. Лубнин А.Н., Дорофеев Г.А., Никонова Р.М. и др. // Физика твердого тела. 2017. М. 59. № 11. С. 2206. https://doi.org/10.1134/S106378341711019110.1134/S1063783417110191).
  12. 12. Dofofeev G.A., Lad’yanov V.I., Lubnin A.N. et al. // Int. J. Hydrogen Energy. 2014. V. 39 (18). P. 9690. https://doi.org/10.1016/j.ijhydene.2014.04.101
  13. 13. Аксенова В.В., Канунникова О.М., Бурнышев И.Н. и др. // Журн. физ. химии. 2022. Т. 96. № 3. С. 350. https://doi.org/10.1134/S00360244220300310.1134/S003602442203003).https://doi.org/10.31857/S0044453722030037
  14. 14. Lomaeva S.F. // Phys. Met. Metallogr. 2007. V. 104. P. 388.
  15. 15. Беллами Л. Новые данные по ИК-спектрам сложных молекул. М.: Мир, 1971. 319 с.
  16. 16. Наканиси К. Инфракрасные спектры и строение органических соединений. Практическое руководство. М.: Мир, 1965. 216 с. (Nakanishi K. “Infrared Absorption spectroscopy – Practical”, San Francisco: Holden-Day, Inc., 1962. 233 p.)
  17. 17. Pretsch E., Bühlmann Ph., Badertscher M. Structure Determination of Organic Compounds. Tables of Spectral Data. 4th ed. Berlin Heidelberg: Springer-Verlag, 2009. 433 p.
  18. 18. Lubnin A.N., Dorofeev G.A., Lad’yanov V.I. et al. Metastable Interstitial Phases by Ball Milling of the Titanium in Liquid Hydrocarbons. “Multifunctional Materials and Modeling”, Apple Academic Press, Oakville, Canada, 2015. Part II: Surface and interface investigations. Chapter 20. P. 189. https://doi.org/10.1201/b18552 .
  19. 19. Kanunnikova O.M., Aksenova V.V., Dorofeev G.A. // Mater. Sci. Forum.2019. V. 946. P. 351. https://doi.org/10.4028/www.scientific.net/MSF.946.351
  20. 20. Kanunnikova O.M., Aksenova V.V., Dorofeev G.A. // Ibid. 2020. V. 989. P. 532. https://doi.org/10.4028/www.scientific.net/MSF.989.532
  21. 21. Kwon Y.-S., Gerasimov K.B., Yoon S.-K. // J. Alloys Comp. 2002. V. 346. P 276. http://www.crystallography.ru/MA/articles/BallTemperature2002_Gerasimov.pdf.
  22. 22. Takacs L., McHenry J.S. // J. Mater. Sci. 2006. V. 41. P. 5246. https://doi.org/10.1007/s10853-006-0312-4
  23. 23. Фундаментальные основы механической активации, механосинтеза и механохимических технологий. Отв. ред. Е.Г. Аввакумов, Новосибирск: СО РАН, 2009, 343 с.
  24. 24. Boldyrev V.V. // Powder Technology V. 122. 2002. P. 247. https://doi.org/10.1016/S0032-5910 (01)00421-1
  25. 25. Larkin P.J. Infrared and Raman Spectroscopy: principles and spectral interpretation. Elsevier, 2011. 230 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library