RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Calculating Vertical Ionization Energies of Hydrated Biological Chromophores Based on Multiconfigurational Perturbation Theory

PII
10.31857/S0044453723040088-1
DOI
10.31857/S0044453723040088
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 4
Pages
559-564
Abstract
Here we introduce a methodology for calculating vertical detachment energies (VDE) and vertical ionization energies (VIE) of anionic and neutral chromophores in aqueous environment. The proposed method is based on the extended multiconfigurational quasidegenerate perturbation theory coupled to the explicit treatment of solvent effects in the frame of the effective fragment potential method. We show that the solvent polarization contribution must be considered for getting accurate quantitative estimations of VDEs and VIEs. The calculated values of VDE for phenolate (7.3 eV) and VIE for phenol (7.9 eV) in aqueous environment are in good agreement with the experimental results obtained using X-ray and multiphoton UV photoelectron spectroscopy. Our approach will be useful for studying processes of photoinduced electron transfer from anionic as well as neutral biological chromophores in aqueous solution.
Keywords
фотоиндуцированная ионизация фотоиндуцированный срыв электрона потенциал ионизации сольватация фотоэлектронная спектроскопия многоконфигурационные методы квантовой химии метод потенциалов эффективных фрагментов
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Henley A., Fielding H.H. // Int. Rev. Phys. Chem. 2019. V. 38. P. 1.
  2. 2. Bull J., Anstöter, C., Verlet J. // Nat. Commun. 2019. V. 10. P. 5820.
  3. 3. Faubel M., Siefermann K.R., Liu Y. et al. // Acc. Chem. Res. 2012. V. 45. P. 120.
  4. 4. Seidel R., Winter B., Bradforth S.E. // Annu. Rev. Phys. Chem. 2016. V. 67. P. 283.
  5. 5. Riley J.W., Wang B., Woodhouse J.L. et al. // J. Phys. Chem. Lett. 2018. V. 9. P. 678.
  6. 6. Gordon M.S., Freitag M.A., Bandyopadhyay P. et al. // J. Phys. Chem. A. 2001. V. 105. P. 293.
  7. 7. Gordon M.S., Fedorov D.G., Pruitt S.R. et al. // Chem. Rev. 2012. V. 112. P. 632.
  8. 8. Ghosh D., Isayev O., Slipchenko L.V. et al. // J. Phys. Chem. A. 2011. V. 115. P. 6028.
  9. 9. Ghosh D., Roy A., Seidel R. et al. // J. Phys. Chem. B. 2012. V. 116. P. 7269.
  10. 10. Henley A., Riley J., Wang B. et al. // Faraday Discuss. 2020. V. 221. P. 202.
  11. 11. Granovsky A.A. // J. Chem. Phys. 2011. V. 134. P. 214113.
  12. 12. Acharya A., Bogdanov A.M., Grigorenko B.L. et al. // Chem. Rev. 2017. V. 117. P. 758.
  13. 13. Phillips J.C., Braun R., Wang W. et al. // J. Comp. Chem. 2005. V. 26. P. 1781.
  14. 14. Granovsky A.A. Firefly version 8.2.0. http://classic.chem.msu.su/gran/firefly.
  15. 15. Scholz M.S., Fortune W.G., Tau O., Fielding H.H. // J. Phys. Chem. Lett. 2022. V. 13. P. 6889.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library