RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Obtaining Methanol from CO2 on Cu–Zn/Al2O3 and Cu–Zn/SiO2 Catalysts: Effect of the Support and Conditions of the Reaction

PII
10.31857/S0044453723040179-1
DOI
10.31857/S0044453723040179
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 4
Pages
495-499
Abstract
A study is performed of the catalytic properties of Cu–Zn catalysts on Al2O3 and SiO2 supports (Acros) in the reaction of CO2 hydrogenation to obtain methanol. A sample of 30Cu15Zn/Al2O3 displays great selectivity toward methanol. A sample of 30Cu15Zn/SiO2 has the highest methanol performance. The methanol performance of a sample of 10Cu5Zn/Al2O3 is doubled when the pressure is raised from 10 to 30 atm, and a 94% increase in selectivity is observed. A sample of catalyst 10Cu5Zn/SiO2 does not lose its activity after 10 h of a catalytic reaction, and its methanol performance grows with repeated use
Keywords
биметаллические катализаторы оксид меди оксид цинка силикагель оксид алюминия гидрирование диоксида углерода получение метанола утилизация диоксида углерода
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Evdokimenko N.D., Kustov A.L., Kim K.O. et al. // Mendeleev Commun. 2018. V. 28. P. 147.
  2. 2. Pokusaeva Y.A., Koklin A.E., Lunin V.V. et al. // Mendeleev Commun. 2019. V. 29. P. 382.
  3. 3. Evdokimenko N.D., Kustov A.L., Kim K.O. et al. // Funct. Matter. Lett. 2020. V. 2040004. P. 1.
  4. 4. Chernyak S.A., Ivanov A.S., Stolbov D.N. et al. // Carbon. 2020. V. 168. P. 475.
  5. 5. Bogdan V.I., Koklin A.E., Kustov A.L. et al. // Molecules. 2021. V. 26. P. 2883.
  6. 6. Konopatsky A.S., Firestein K.L., Evdokimenko N.D. et al. // J. Catal. 2021. V. 402. P. 130.
  7. 7. Kovalskii A.M., Volkov I.N., Evdokimenko N.D. et al. // Appl. Catal. B. 2022. V. 303. P. 120891.
  8. 8. Evdokimenko N.D., Kapustin G.I., Tkachenko O.P. et al. // Molecules. 2022. V. 27. P. 1065.
  9. 9. Zeolites and Zeolite-like Materials / Ed. by B.F. Sels, L.M. Kustov. 2016. P. 1–459.
  10. 10. Tursunov O., Kustov L., Tilyabaev Z. // J. Petroleum Sci. Eng. 2019. V. 180. P. 773.
  11. 11. Tursunov O., Kustov L., and Kustov A. // Oil and Gas Sci. Technol. 2017. V. 72 (5). P. 30.
  12. 12. Tursunov O., Kustov L., and Tilyabaev Z. // J. Taiwan Inst. Chem. Engineers 2017. V. 78. P. 416.
  13. 13. Kurtz M. // Catal. Lett. 2003. V. 86. P. 77.
  14. 14. Saito M. // Catal. Surv. From Asia. 2004. V. 8. P. 285.
  15. 15. Ma J., Sun N.N., Zhang X.L. et al. // Catal. Today. 2009. V. 148. P. 221.
  16. 16. Wang W., Wang S., Ma X. et al. // Chem. Soc. Rev. 2011. V. 40. P. 3703.
  17. 17. Jiang Y. // J. CO2 Util. 2018. V. 26. P. 642.
  18. 18. Dasireddy V.D.B.C., Likozar B. // Ren. En. 2019. V. 140. P. 452.
  19. 19. Meunier N., Chauvy R., Mouhoubi S. et al. // Ren. En. 2020. V. 146. P. 1192.
  20. 20. Fang X., Xi Y., Jia H. et al. // J. Ind. Eng. Chem. 2020. V. 88. P. 268.
  21. 21. Kropp T., Paier J., Sauer J. // J. Catal. 2017. V. 352. P. 382.
  22. 22. Gribovskii A., Ovchinnikova E., Vernikovskaya N. et al. // Chem. Eng. J. 2017. V. 308. P. 135.
  23. 23. Losch P., Pinar A.B., Willinger M.G. et al. // J. Catal. 2017. V. 345. P. 11.
  24. 24. Wang X., Li R., Bakhtiar S. ul H. et al. // Catal. Commun. 2018. V. 108. P. 64.
  25. 25. Niu X., Gao J., Wang K. et al. // Fuel Process Technol. 2017. V. 157. P. 99.
  26. 26. Yang L., Liu Z., Liu Z. et al. // Chin. J. Catal. 2017. V. 38 (4). P. 683.
  27. 27. Pirola C., Galli F., Bianchi C.L. et al. // En. Fuels. 2014. V. 28 (8). P. 5236.
  28. 28. Boffito D.C., Galli F., Martinez P.R. et al. // Chem. Eng. Trans. 2014. V. 43. P. 427.
  29. 29. Sun Q. // J. Catal. 1997. V. 167. P. 92.
  30. 30. Mierczynski P. // Catal. Today. 2011. V. 176. P. 21.
  31. 31. Bogdan V.I., Kustov L.M. // Mendeleev Commun. 2015. V. 25. P. 446.
  32. 32. Ren H. // J. Ind. Eng. Chem. 2015. V. 28. P. 261.
  33. 33. Bukhtiyarova M. // Catal. Lett. 2017. V. 147. P. 416.
  34. 34. Zhang C. // J. CO2 Util. 2017. V. 17. P. 263.
  35. 35. Sloczynski J., Grabowski R., Kozlowska A. et al. // Appl. Catal. A. 2004. V. 278. P. 11.
  36. 36. Evdokimenko N.D., Kim K.O., Kapustin G.I. et al. // Catal. Ind. 2018. V. 10. P. 288.
  37. 37. Kim K.O., Evdokimenko N.D., Pribytkov P.V. et al. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 2422.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library