RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Theoretical Study of the Hydrolysis of Iron–Sulfur–Nitrosyl Complex [Fe(NO)2(SCH2)2]+

PII
10.31857/S004445372305014X-1
DOI
10.31857/S004445372305014X
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 5
Pages
607-616
Abstract
The mechanisms of hydrolysis of a model iron–sulfur–nitrosyl complex (ISNC) [Fe(NO)2(SCH2)2]+ 1 with thioformaldehyde ligands have been studied using the density functional theory and polarizable continuum model of water. Quantum chemical calculations employed the TPSSH and M06 functionals and def2-TZVP basis set and took into account interactions with water medium. Hydrolysis of 1 was found to be an exothermic process with small activation energy whereas exchange of NO for H2O is thermodynamically unfavorable. The calculations have predicted lower activation barrier for the associative mechanism with concerted replacement of SCH2 by H2O than for dissociative mechanism with homolytic bond cleavage of the Fe–S coordination bond in water. The mechanism of hydrolysis that involves participation of OH– was found to be less probable at pH 7. The calculation results show that ISNC 1 is of {Fe1+(NO•)2}9 type and retains its tetrahedral structure that is typical for crystals of ISNC with thiocarbonyl ligands.
Keywords
гидролиз серонитрозильный комплекс железа тиоформальдегид теория функционала плотности влияние растворителя
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Butler A.R., Glidewell C., Li M.-H. // Adv. Inorg. Chem. 1988. V. 32. P. 335.
  2. 2. Butler A.R. // Chem. Rev. 2002. V. 102. P. 1155.
  3. 3. Szaciłowski K., Chmura A., Stasicka Z. // Coord. Chem. Rev. 2005. V. 249. P. 2408.
  4. 4. Sanina N.A., Aldoshin S.M. // Russ. Chem. Bull. 2011. V. 60. P. 1223.
  5. 5. Lewandowska H., Kalinowska M., Brzóska K. et al. // Dalton Trans. 2011. V. 40. P. 8273.
  6. 6. Hsiao H.Y., Chung C.W., Santos J.H. et al. // Ibid. 2019. V. 48. P. 9431.
  7. 7. Vanin A.F. // Int. J. Mol. Sci. 2021. V. 22. P. 10356.
  8. 8. Beinert H., Holm R.H., Munck E. // Science. 1997. V. 277. P. 653.
  9. 9. Rao P.V., Holm R.H. // Chem. Rev. 2004. V. 104. P. 527.
  10. 10. Borodulin R.R., Kubrina L.N., Mikoyan V.D. et al. // Nitric Oxide. 2013. V. 29. P. 4.
  11. 11. Keszler A., Diers A.R., Ding Z., Hogg N. // Ibid. 2017. V. 65. P. 1.
  12. 12. Butler A.R., Glidewel C., Hyde A.R. et al. // Polyhedron. 1983. V. 2. P. 1045.
  13. 13. Syrtsova L.A., Sanina N.A., Kabachkov E.N. et al. // RSC Adv. 2014. V. 4. P. 24560.
  14. 14. Pokidova O.V., Shkondina N.I., Syrtsova L.A. et al. // Rus. Chem. Bull., Int. Ed. 2017. V. 66. P. 821.
  15. 15. Sanina N.A., Aldoshin S.M., Korchagin D.V. et al. // Inorg. Chem. Comm. 2014. V. 49. P. 44.
  16. 16. Sanina N.A., Manzhos R.A., Emel’yanova N.S. et al. // J. Mol. Struct. 2019. V. 1181. P. 253.
  17. 17. Buhro W.E., Etter M.C., Georgiou S. et al. // Organometallics. 1987. V. 6. P. 1150.
  18. 18. Schenk W.A., Vedder B., Klüglein M. et al. // Dalton Trans. 2002. V. 16. P. 3123.
  19. 19. Schenk W.A. // Ibid. 2011. V. 40. P. 1209.
  20. 20. Staroverov V.N., Scuseria G.E., Tao J., Perdew J.P. // J. Chem. Phys. 2003. V. 119. P. 12129.
  21. 21. Zhao Y., Truhlar D.G. // Theor. Chem. Acc. 2008. V. 120. P. 215.
  22. 22. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297.
  23. 23. Cances E., Mennuci B., Tomassi J.A. // J. Chem. Phys. 1997. V. 107. P. 3032.
  24. 24. Marenich A.V., Cramer C.J., Truhlar D.G. // J. Phys. Chem. B. 2009. V. 113. P. 6378.
  25. 25. Ribeiro R.F., Marenich A.V., Cramer C.J. et al. // Ibid. 2011. V. 115. P. 14556.
  26. 26. Krapivin V.B., Sen’ V.D., Luzhkov V.B. // Chem. Phys. 2019. V. 522. P. 214.
  27. 27. Лужков В.Б. // Журн. физ. химии. 2020. Т. 94. № 5. С. 680. DOI: (Luzhkov V.B. // Russ. J. Phys. Chem. 2020. V. 94. P. 680.https://doi.org/10.1134/S003602442005015510.1134/S0036024420050155).https://doi.org/10.31857/S0044453720050155
  28. 28. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, 2010.
  29. 29. Grimme S., Ehrlich S., Goerigk L.J. // Comput. Chem. 2011. V. 32. P. 1456.
  30. 30. Лужков В.Б. // Изв. РАН Сер. Хим. 2014. № 3. С. 561.
  31. 31. Pokidova O.V., Luzhkov V.B., Emel’yanova N.S. et al. // Dalton Trans. 2020. V. 49. P. 12674.
  32. 32. Luzhkov V.B., Österberg F., Acharya P. et al. // Phys. Chem. Chem. Phys. 2002. V. 4. P. 4640.
  33. 33. Westheimer F.H. // Acc. Chem. Res. 1968. V. 1. P. 70.
  34. 34. Florián J., Warshel A. // J. Phys. Chem. B. 1998. V. 102. P. 719.
  35. 35. Hu C.H., Brinck T.J. // J. Phys. Chem. A. 1999. V. 103. P. 5379.
  36. 36. Menegon G., Loos M., Chaimovich H. // Ibid. 2002. V. 106. P. 9078.
  37. 37. Menegon G., Chaimovich H. // Ibid. 2005. V. 109. P. 5625.
  38. 38. Luzhkov V.B., Venanzi C.A. // J. Phys. Chem. 1995. V. 99. P. 2312.
  39. 39. Tsai F.T., Chiou S.J., Tsai M.C. et al. // Inorg. Chem. 2005. V. 44. P. 5872.
  40. 40. Dai R.J., Ke S.C. // J. Phys. Chem. B. 2007. V. 111. P. 2335.
  41. 41. Emelyanova N.S., Shestakov A.F., Sulimenkov I.V. et al. // Russ. Chem. Bull. 2012. V. 61. P. 1.
  42. 42. Emel’yanova N.S., Poleshchuk O.K., Sanina N.A. et al. // Ibid. 2014. V. 63. P. 37.
  43. 43. Lo F.C., Li Y.W., Hsu I.J. et al. // Inorg. Chem. 2014. V. 53. P. 10881.
  44. 44. Emelyanova N.S., Shmatko N.Y., Sanina N.A., Aldoshin S.M. // Russ. Chem. Bull. 2017. V. 66. P. 1842.
  45. 45. Banerjee A., Sen S., Paul A. // Chem. Eur. J. 2018. V. 24. P. 3330.
  46. 46. Arantes G.M., Bhattacharjee A., Field M.J. // Angew. Chem. Int. Ed. 2013. V. 52. P. 8144.
  47. 47. Arantes G.M., Field M.J. // J. Phys. Chem. A. 2015. V. 119. P. 10084.
  48. 48. Teixeira M.H., Curtolo F., Camilo S.R. et al. // J. Chem. Inf. Model. 2020. V. 60. P. 653.
  49. 49. Krapivin V.B., Luzhkov V.B., Sanina N.A., Aldoshin S.M. // Mendeleev Commun. 2022. V. 32. P. 457.
  50. 50. Enemark J.H., Feltham R.D. // Coord. Chem. Rev. 1974. V. 13. P. 339.
  51. 51. Vanin A.F., Burbaev D.S. // J. Biophys. 2011. V. 2011. P. 1.
  52. 52. De Abreu H.A., Guimarães L., Duarte H.A. // J. Phys. Chem. A. 2006. V. 110. P. 7713.
  53. 53. Marom N., Tkatchenko A., Rossi M. et al. // J. Chem. Theory Comput. 2010. V. 6. P. 81.
  54. 54. Zhao Y., Truhlar D.G. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 2813.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library