- PII
- 10.31857/S0044453723050217-1
- DOI
- 10.31857/S0044453723050217
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 97 / Issue number 5
- Pages
- 617-623
- Abstract
- Fluorescent probes: 8-anilino-1-naphthalenesulfonate (ANS), eosin Y, and pyrene were used to study the interaction between liposomes and three nitrosyl iron complexes that are promising anti-inflammatory agents and cardioprotectors. It was shown that the studied complexes compete with ANS molecules for the bonding sites in a bilayer of liposomes. The incorporation of the complexes into the lipid bilayer was also studied according to the quenching of eosin Y and pyrene fluorescence. The data suggest that iron nitrosyl complexes interact with the phospholipids headgroups and can penetrate deeper into the hydrophobic center of a lipid bilayer, where they affect the packing of fatty acid chains. The pronounced membranotropic properties of the complexes correlated with their ability to inhibit lipid peroxidation. Complexes with high constants of pyrene bonding are the most effective antioxidants.
- Keywords
- нитрозильные комплексы железа доноры NO мембрана липосомы флуоресцентные зонды перекисное окисление липидов
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 6
References
- 1. Vanin A.F. // Nitric Oxide. 2009. № 1 (21). C. 1–13. https://doi.org/10.1016/j.niox.2009.03.005
- 2. Sanina N.A., Aldoshin S.M., Shmatko N.Y. et al. // Inorganic Chemistry Comm. 2014. (49). C. 44. https://doi.org/10.1016/j.inoche.2014.09.016
- 3. Sanina N.A., Isaeva Y.A., Utenyshev A.N. et al. // Inorganica Chimica Acta. 2021. (527). C. 120559. https://doi.org/10.1016/j.ica.2021.120559
- 4. Sanina N.A., Aldoshin S.M., Shmatko N.Y. et al. // New Journal of Chemistry. 2015. № 2 (39). C. 1022. https://doi.org/10.1039/C4NJ01693A
- 5. Haynes D.H., Staerk H. // The Journal of Membrane Biology. 1974. № 1 (17). C. 313. https://doi.org/10.1007/BF01870190
- 6. Ma J.Y., Ma J.K., Weber K.C. // Journal of Lipid Research. 1985. № 6 (26). C. 735–744. https://doi.org/10.1016/S0022-2275 (20)34331-5
- 7. Rooijen N. Van, Sanders A. // Journal of Immunological Methods. 1994. № 1–2 (174). C. 83. https://doi.org/10.1016/0022-1759 (94)90012-4
- 8. Montero M.T., Pijoan M., Merino-Montero S. et al. // Langmuir. 2006. № 18 (22). C. 7574. https://doi.org/10.1021/la060633c
- 9. Haynes D.H. // The Journal of Membrane Biology. 1974. № 1 (17). C. 341. https://doi.org/10.1007/BF01870191
- 10. Hughes Z.E., Mark A.E., Mancera R.L. // The Journal of Physical Chemistry B. 2012. № 39 (116). C. 11911. https://doi.org/10.1021/jp3035538
- 11. Sanina N.A., Sulimenkov I.V., Emel’yanova N.S. et al. // Dalton Transactions. 2022. № 22 (51). C. 8893–8905. https://doi.org/10.1039/D2DT01011A
- 12. Cevc G. // Biochimica et Biophysica Acta (BBA) – Reviews on Biomembranes. 1990. № 3 (1031). C. 311–382. https://doi.org/10.1016/0304-4157 (90)90015-5
- 13. Lakowicz J.R. Ed. Principles of Fluorescence Spectroscopy. Boston, MA: Springer US, 2006. ISBN: 978-0-387-31278-1.
- 14. Podo F., Blasie J.K. // Proceedings of the National Academy of Sciences of the United States of America. 1977. № 3 (74). P. 1032.
- 15. Förster T., Kasper K. // Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für Physikalische Chemie. 1955. № 10 (59). C. 976.
- 16. Mclean L., Hagaman K. // Free Radical Biology and Medicine. 1992. № 2(12). C. 113. https://doi.org/10.1016/0891-5849 (92)90004-Z
- 17. Hinzmann J.S., McKenna R.L., Pierson T.S. et al. // Chemistry and Physics of Lipids. 1992. № 2 (62). C. 123. https://doi.org/10.1016/0009-3084 (92)90090-C
- 18. Audus K.L., Guillot F.L., Mark Braughler J. // Free Radical Biology and Medicine. 1991. № 4 (11). C. 361. https://doi.org/10.1016/0891-5849 (91)90152-S
- 19. McLean L.R., Hagaman K.A. // Biochemistry. 1989. № 1 (28). C. 321. https://doi.org/10.1021/bi00427a043
- 20. Dache T.C., Motta C., Neufcour D., Jacotot B. // Journal of Clinical Biochemistry and Nutrition. 1991. № 1 (10). C. 51. https://doi.org/10.3164/jcbn.10.51
- 21. Fukuzawa K., Chida H., Tokumura A., Tsukatani H. // Archives of Biochemistry and Biophysics. 1981. № 1 (206). C. 173. https://doi.org/10.1016/0003-9861 (81)90078-3
- 22. Urano S., Inomori Y., Sugawara T. et al. // Journal of Biological Chemistry. 1992. № 26 (267). C. 18365. https://doi.org/10.1016/S0021-9258 (19)36970-4
- 23. Suzuki Y.J., Tsuchiya M., Wassall S.R. et al. // Biochemistry. 1993. № 40 (32). C. 10692. https://doi.org/10.1021/bi00091a020
- 24. Valko M., Leibfritz D., Moncol J. et al. // The International Journal of Biochemistry & Cell Biology. 2007. № 1 (39). C. 44. https://doi.org/10.1016/j.biocel.2006.07.001
- 25. Hummel S.G., Fischer A.J., Martin S.M. et al. // Free Radical Biology and Medicine. 2006. № 3 (40). C. 501. https://doi.org/10.1016/j.freeradbiomed.2005.08.047