- PII
- 10.31857/S0044453723050229-1
- DOI
- 10.31857/S0044453723050229
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 97 / Issue number 5
- Pages
- 624-633
- Abstract
- The review presents an attempt to collect and systematize the available data on the antioxidant activity of glycyrrhizin obtained by various physicochemical methods and to stimulate further discussions on the mechanisms of its activity and prospects for its use as a multifunctional drug delivery system.
- Keywords
- глицирризин антиоксидантная активность свободные радикалы супрамолекулярные комплексы мицеллы
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 2
References
- 1. Толстиков Г.А., Балтина Л.А., Гранкина В.П., Кондратенко P.M. Солодка: биоразнообразие, химия, применение в медицине. Новосибирск: Академическое издательство “Гео”, 2007. 311 с.
- 2. Shibata S. // Yakugaku Zasshi - Journal of the Pharmaceutical Society of Japan. 2000. V. 120(10). P. 849. https://doi.org/10.1248/yakushi1947.120.10_849
- 3. Selyutina O.Yu., Polyakov N.E. // Int. J. Pharm. 2019. V. 559. P. 271.
- 4. Fiore C., Eisenhut M., Ragazzi E. et al. // J. Ethnopharmacol. 2005. V. 99. P. 317.
- 5. Ming L.J., Yin A.C. // Natural Product Communications. 2013. V. 8(3). P. 415.
- 6. Lohar A.V., Wankhade A.M., Faisal M. et al. // European Journal of Biomedical and Pharmaceutical Sciences. 2020. V. 7(7). P. 330.
- 7. Hasan M.K., Ara I., Mondal M.S.A., Kabir Y. // Heliyon. 2021. V. 7(6). e07240. https://doi.org/10.1016/j.heliyon.2021.e07240
- 8. Su X., Wu L., Hu M. et al. // Biomed. Pharmacother. 2017. V. 95. P. 670. https://doi.org/10.1016/j.biopha.2017.08.123
- 9. Graebin C.S. // Sweeteners. 2016. P. 1–17. https://doi.org/10.1007/978-3-319-26478-3_15-1
- 10. Sun Z.G., Zhao T.T., Lu N. et al. // Mini. Rev. Med. Chem. 2019. V. 19(10). P. 826. https://doi.org/10.2174/1389557519666190119111125
- 11. Hoever G., Baltina L., Michaelis M. et al. // J. Med. Chem. 2005. V. 24. P. 1256.
- 12. Cinatl J., Morgenstern B., Bauer G. et al. // Lancet. 2003. V. 361(9374). P. 2045. Doi:https://doi.org/10.1016/s0140-6736 (03)13615-x
- 13. Chrzanowski J., Chrzanowska A., Graboń W. // Phytotherapy Research. 2021. V. 35(2). P. 629.https://doi.org/10.1002/ptr.6852
- 14. Bailly C., Vergoten G. // Pharm. Ther. 2020. V. 214. P. 107618.https://doi.org/10.1016/j.pharmthera.2020.107618
- 15. Kang H., Lieberman P.M. // J. Virol. 2011. V. 85(21). P. 11159.
- 16. Lin J.C. // Antiviral Res. 2003. V. 59. P. 41.https://doi.org/10.1016/s0166-3542 (03)00030-5
- 17. Duan E., Wang D., Fang L. et al. // Antiviral Res. 2015. V. 120. P. 122.https://doi.org/10.1016/j.antiviral.2015.06.001
- 18. Harada S. // Biochem. J. 2005. V. 392. P. 191.
- 19. Sui X., Yin J., Ren X. // Antiviral Res. 2010. V. 85. P. 346.
- 20. Wolkerstorfer A., Kurz H., Bachhofner N., Szolar O.H. // Antiviral Res. 2009. V. 83. P. 171.
- 21. Konovalova G.G., Tikhaze A.K., Lankin V.Z. // Bull. Exp. Biol. Med. 2000. V. 130. P. 658.
- 22. Egashira T., Takayama F., Wada Y. et al. // Yakuri to Chiryo. 1994. V. 22(7). P. 2981.
- 23. Ojha S., Javed H., Azimullah S. et al. // Neurotoxicity Research. 2016. V. 29. P. 275. https://doi.org/10.1007/s12640-015-9579-z
- 24. Khorsandi L., Orazizadeh M., Mansori E., Fakhredini F. // Bratisl. Lek. Listy. 2015. V. 116(6). P. 383. https://doi.org/10.4149/bll_2015_073
- 25. Kiso Y., Tohkin M., Hikino H. et al. // Planta Med. 1984. V. 50(4). P. 298. https://doi.org/10.1055/s-2007-969714
- 26. Farmanzadeh D., Tabari L. // J. Indian Chem. Soc. 2017. V. 94(3). P. 261.
- 27. Imai K., Takagi Y., Iwazaki A., Nakanishi K. // Free Rad. Antiox. 2014. V. 3(1). P. 40.
- 28. Rackova L., Jancinova V., Petrikova M. et al. // Nat. Prod. Res. 2007. V. 21(14). P. 1234.
- 29. Takayama F., Egashira T., Yamanaka Y. // Japan. Pharm. Ther. 2000. V. 28(9). P. 763.
- 30. Kato T., Horie N., Hashimoto K. et al. // In Vivo. 2008. V. 22(5). P. 583.
- 31. Cheel J., Van Antwerpen P., Tumova L. et al. // Food Chem. 2010. V. 122(3). P. 508.
- 32. Polyakov N.E., Leshina T.V., Salakhutdinov N.F. et al. // Free Rad. Biol. Med. 2006. V. 40(10). P. 1804.
- 33. Gandhi N.M., Maurya D.K., Salvi V. et al. // J. Radiat. Res. 2004. V. 45(3). P. 461. https://doi.org/10.1269/jrr.45.461
- 34. Beskina O.A., Abramov A.Y., Gabdulkhanova A.G. et al. // Biomed. Khim. 2006. V. 52(1). P. 60.
- 35. Thakur D., Abhilasha, Jain A., Ghoshal G. // J. Sci. Ind. Res. 2016. V. 75(8). P. 487.
- 36. Tolstikova T.G., Khvostov M.V., Bryzgalov A.O. // Mini-Rev. Med. Chem. 2009. V. 9. P. 1317.
- 37. Apanasenko I.E., Selyutina O.Yu., Polyakov N.E. et al. // Arch. Biochem. Biophys. 2015. V. 572. P. 58.
- 38. Polyakov N.E., Khan V.K., Taraban M.B., Leshina T.V. // J. Phys. Chem. B. 2008. V. 112. P. 4435.https://doi.org/10.1021/jp076850j
- 39. Polyakov N.E., Magyar A., Kispert L.D. // J. Phys. Chem. B. 2013. V. 117. P. 10173.
- 40. Pashkina E., Evseenko V., Dumchenko N. et al. // Nanomaterials. 2022. V. 12. P. 148.https://doi.org/10.3390/nano12010148
- 41. Душкин А.В., Метелева Е.С., Толстикова Т.Г., Хвостов М.В. и др. // Химия в интересах устойчивого развития. 2019. Т. 27. С. 233. https://doi.org/10.15372/KhUR2019
- 42. Сунцова Л.П., Шлотгауэр А.А., Евсеенко В.И. и др. // Химия в интересах устойчивого развития. 2019. Т. 27. С. 193. https://doi.org/10.15372/KhUR2019125
- 43. Focsan A.L., Polyakov N.E., Kispert L.D. // Molecules. 2019. V. 24. P. 3947. https://doi.org/10.3390/molecules24213947
- 44. Толстикова Т.Г., Толстиков А.Г., Толстиков Г.А. // Вестн. РАН. 2007. Т. 77. № 10. С. 867. Tolstikova T.G., Tolstikov A.G., Tolstikov G.A. // Herald of the Russian Academy of Sciences. 2007. V. 77(5). P. 447.
- 45. Dushkin A.V., Tolstikova T.G., Khvostov M.V., Tolstikov G.A. Complexes of polysaccharides and glycyrrhizic acid with drug molecules. Mechanochemical synthesis and pharmacological activity. In: Karunaratne D.N. (Ed.), The Complex World of Polysaccharides. InTech: Rijeka, Croatia. 2012. P. 573.
- 46. Song J., Kim J.Y., You G. et al. // Biotechnology and Bioprocess Engineering. 2022. V. 27(2). P. 163. https://doi.org/10.1007/s12257-021-0198-7
- 47. Shen C., Shen B., Zhu J. et al. // Drug Dev. Ind. Pharm. 2021. V. 47(2). P. 207. https://doi.org/10.1080/03639045.2020.1862178
- 48. Kondo M., Minamino H., Okuyama G. et al. // J. Soc. Cosmet. Chem. 1986. V. 37. P. 177.
- 49. Matsuoka K., Miyajima R., Ishida Y. et al. // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2016. V. 500. P. 112.
- 50. Wang Y., Zhao B., Wang S. et al. // Drug Delivery. 2016. V. 23(5). P. 1623. https://doi.org/10.3109/10717544.2015.1135489
- 51. Kornievskaya V.S., Kruppa A.I., Polyakov N.E., Leshina T.V. // J. Phys. Chem. B. 2007. V. 111. P. 11447.
- 52. Petrova S.S., Schlotgauer A.A., Kruppa A.I., Leshina T.V. // Z. Phys. Chem. 2016. V. 231. P. 1. https://doi.org/10.1515/zpch-2016-0845
- 53. Spěváček J. // Curr. Opin. Colloid Interface Sci. 2009. V. 14. P. 184.
- 54. Cosa G. // Pure Appl. Chem. 2004. V. 76(2). P. 263.
- 55. De Vries H., Beijersbergen van Henegouwen G.M.J. // Photochem. Photobiol. 1995. V. 62. P. 959.
- 56. Polyakov N.E., Taraban M.B., Leshina T.V. // Photochem. Photobiol. 2004. V. 80. P. 565.
- 57. Schleifer K.-J. // Pharmazie. 1999. V. 54. P. 804.
- 58. Selyutina O.Yu., Mastova A.V., Shelepova E.A., Polyakov N.E. // Molecules. 2021. V. 26. P. 1270. https://doi.org/10.3390/molecules26051270
- 59. Kim A.V., Shelepova E.A., Evseenko V.I. et al. // J. Mol. Liq. 2021. V. 344. P. 117759.
- 60. Turabekova M.A., Rasulev B.F. // Molecules. 2004. V. 9. P. 1194.
- 61. Wang F.-P., Chen Q.-H., Liu X.-Y. // Natural Product Reports. 2010. V. 27(4). P. 529. https://doi.org/10.1039/b916679c
- 62. Polyakov N.E., Khan V.K., Taraban M.B. et al. // Org. Biomol. Chem. 2005. V. 3. P. 881.
- 63. Polyakov N.E., Leshina T.V., Tkachev A.V. et al. // J. Photochem. Photobiol. A: Chem. 2008. V. 197. P. 290.
- 64. Polyakov N.E., Simaeva O.A., Taraban M.B. et al. // J. Phys. Chem. B. 2010. V. 114(13). P. 4646.
- 65. Ageeva A.A., Khramtsova E.A., Plyusnin V.F. et al. // Photochem. Photobiol. Sci. 2018. V. 17(2). P. 192. https://doi.org/10.1039/c7pp00366h
- 66. Polyakov N.E., Leshina T.V. // Russ. Chem. Bull. Int. Ed. 2007. V. 56. P. 631.
- 67. Polyakov N.E., Khan V.K., Taraban M.B. et al. // J. Phys. Chem. B. 2005. V. 109(51). P. 24526. Doi:https://doi.org/10.1021/jp053434v
- 68. Kornievskaya V.S., Kruppa A.I., Polyakov N.E., Leshina T.V. // J. Phys. Chem. B. 2007. V. 111. P. 11447.
- 69. Kornievskaya V.S., Kruppa A.I., Leshina T.V. // J. Incl. Phenom. Macrocycl. Chem. 2008. V. 60. P. 123-130.
- 70. Lugović-Mihić L., Duvančić T., Fercek I. et al. // Acta Clin. Croat. 2017. V. 56. P. 277.
- 71. Okazaki S., Hirata A., Shogomori Y. et al. // J. Photochem. Photobiol. B. 2021. V. 214. P. 112090. https://doi.org/10.1016/J.JPHOTOBIOL.2020.112090
- 72. Babenko S.V., Kuznetsova P.S., Polyakov N.E., Kruppa A.I., Leshina T.V. // J. Photochem. Photobiol. A Chem. 2020. V. 392. P. 112383.
- 73. Mastova A.V., Selyutina O.Yu., Evseenko V.I., Polyakov N.E. // Membranes. 2022. V. 12. P. 251.
- 74. Selyutina O.Yu., Babenko S.V., Kruppa A.I. et al. // New J. Chem. 2022. V. 46. P. 17865. https://doi.org/10.1039/D2NJ02553A
- 75. van de Sand L., Bormann M., Alt M. et al. // Viruses. 2021. V. 13(4). P. 609. https://doi.org/10.3390/v13040609
- 76. Yu S., Zhu Y., Xu J. et al. // Phytomedicine. 2020. P. 153364. https://doi.org/10.1016/j.phymed.2020.153364
- 77. Kong R., Zhu X., Meteleva E.S. et al. // Int. J. Pharm. 2017. V. 534. P. 108. https://doi.org/10.1016/j.ijpharm.2017.10.011
- 78. Glazachev Yu.I., Schlotgauer A.A., Timoshnikov V.A., et al. // J. Memb. Biol. 2020. V. 253(4). https://doi.org/10.1007/s00232-020-00132-3
- 79. Kim A.V., Shelepova E., Selyutina O.Yu. et al. // Mol. Pharm. 2019. V. 16. P. 3188.https://doi.org/10.1021/acs.molpharmaceut.9b00390
- 80. Selyutina O.Yu., Polyakov N.E., Korneev D.V., Zaitsev B.N. // Russ. Chem. Bull. 2014. V. 63(5). P. 1201. https://doi.org/10.1007/s11172-014-0573-z
- 81. Selyutina O.Yu., Apanasenko I.E., Shilov A.G. et al. // Russ. Chem. Bull. 2017. V. 66(1). P. 129. https://doi.org/10.1007/s11172-017-1710-2
- 82. Selyutina O.Yu., Apanasenko I.E., Polyakov N.E. // Russ. Chem. Bull. 2015. V. 64 (7). P. 1555. https://doi.org/10.1007/s11172-015-1040-1
- 83. Selyutina O.Yu., Apanasenko I.E., Kim A.V. et al. // Colloids and Surfaces. B. Biointerfaces. 2016. V. 147. P. 459. https://doi.org/10.1016/j.colsurfb.2016.08.037
- 84. Selyutina O.Yu., Polyakov N.E., Korneev D.V., Zaitsev B.N. // Drug Delivery. 2016. V. 23(3). P. 858. https://doi.org/10.3109/10717544.2014.919544
- 85. Sapra B., Jain S., Tiwary A.K. // Drug Delivery. 2008. V. 15. P. 443. https://doi.org/10.1080/10717540802327047
- 86. Harikrishnan R., Devi G., van Doan H. et al. // Fish & Shellfish Immunology. 2021. V. 119. P. 193.https://doi.org/10.1016/j.fsi.2021.09.040
- 87. Li X.-L., Zhou A.-G., Zhang L., Chen W.-J. // Int. J. Mol. Sci. 2011. V. 12. P. 905.
- 88. Takayama F., Egashira T., Yamanaka Y. // Japan. J. Pharm. 1995. V. 67. P. 104.https://doi.org/10.1016/S0021-5198 (19)46379-8
- 89. Li J.Y., Cao H.Y., Liu P. et al. // Biomed. Res. Int. 2014. P. 872139.
- 90. Pastorino G., Cornara L., Soares S. et al. // Phyther. Res. 2018. V. 32. P. 2323.
- 91. Obolentseva G.V., Litvinenko V.I., Ammosov A.S. et al. // Pharm. Chem. J. 1999. V. 33. P. 427.
- 92. Tripathi M., Singh B.K., Kakkar P. // Food Chem. Toxicol. 2009. V. 47. P. 339.
- 93. Lee C.S., Kim Y.J., Lee M.S. et al. // Life Sci. 2008. V. 83. P. 481.
- 94. Hasan S.K., Siddiqi A., Nafees S. et al. // Mol. Cell. Biochem. 2016. V. 416. P. 169.
- 95. Ageeva A.A., Kruppa A.I., Magin I.M. et al. // Antioxidants. 2022. V. 11. P. 1591.https://doi.org/10.3390/ antiox11081591
- 96. Morozova O.B., Ivanov K.L. // Chem. Phys. Chem. 2019. V. 20(2). P. 197.https://doi.org/10.1002/cphc.201800566
- 97. Goez M. Elucidating Organic Reaction Mechanisms Using Photo-CIDNP Spectroscopy. In: Kuhn L.T. (Ed.). Hyperpolarization Methods in NMR Spectroscopy. Springer Berlin Heidelberg: Berlin, Heidelberg, 2013. P. 1–32.https://doi.org/10.1007/128_2012_348.
- 98. Kuhn L.T., Bargon J. Exploiting Nuclear Spin Polarization to Investigate Free Radical Reactions Via in Situ NMR. In: Bargon J., Kuhn L.T. (Ed.) In situ NMR Methods in Catalysis. Springer Berlin Heidelberg: Berlin, Heidelberg. 2007. P. 125–154.https://doi.org/10.1007/128_2007_119