RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Quantum-Chemical Modeling of Ag/CeO2 Nanoscale Catalysts

PII
10.31857/S0044453723050242-1
DOI
10.31857/S0044453723050242
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 5
Pages
634-644
Abstract
The authors summarize results from calculations using the density functional theory for atoms and small silver clusters on surfaces of nanostructured cerium(IV) oxide, along with the adsorption and transformations of O2 and CO molecules on these systems. Stoichiometric Ce21O42, which has {100} and {111} nanofacets with adsorption centers containing four and three oxygen atoms, is used to model surfaces of cerium oxide. It is shown the O4-center is a center of the selective adsorption of metal atoms. A silver atom on an O3‑center is less stable but it shows a greater ability to activate an O2 molecule. Results from calculations on the {100} and {111} faces of Ce21O42 nanoparticles are compared to data for infinite CeO2(100) and CeO2(111) surfaces. The efficiency of Ag/Ce21O42 atomic complexes is shown in the oxidation of carbon monoxide.
Keywords
оксид церия серебро адсорбция окисление CO метод функционала плотности
Date of publication
13.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Muravev V., Simons J.F.M., Parastaev A. et al. // Angew. Chem. Int. Ed. 2022. V. 61. e202200434.
  2. 2. Boronin A.I., Slavinskaya E.M., Figueroba A. et al. // Appl. Catal. B Env. 2021. V. 286. 119931.
  3. 3. Grabchenko M.V., Mamontov G.V., Zaikovskii V.I. et al. // Ibid. 2020. V. 260. 118148.
  4. 4. Kibis L.S., Svintsitskiy D.A., Kardash T.Yu. et al. // Appl. Cat. A.: Gen. 2019. V. 570. P. 51.
  5. 5. Bera P., Patil K.C., Hegde M.S. // Phys. Chem. Chem. Phys. 2000, V. 2. P. 3715.
  6. 6. Guo C., Wei S., Zhou S. et al. // ACS Appl. Mater. Interfaces 2017. V. 9. P. 26107.
  7. 7. Carraro F., Fapohunda A., Paganini M.C. et al. // ACS Appl. Nano Mater. 2018. V. 1. P. 1492.
  8. 8. Fan L., Fujimoto K. // J. Catal. 1997. V. 172. P. 238.
  9. 9. Farmer J.A., Campbell C.T. // Science. 2010. V. 329. P. 933.
  10. 10. Spezzati G., Su Y., Hofmann J.P. et al. // ACS Catal. 2017. V. 7. P. 6887.
  11. 11. Machida M., Murata Y., Kishikawa K. et al. // Chem. Mater. 2008. V. 20. P. 4489.
  12. 12. Pentyala P., Deshpande P.A // Ind. Eng. Chem. Res. 2019. V. 58. P. 7964.
  13. 13. Liberto G., Tosoni S., Cipriano L.A. et al. // Acc. Mater. Res. 2022. V. 3. P. 986.
  14. 14. Paier J., Penschke C., Sauer J. // Chem. Rev. 2013. V. 113. P. 3949.
  15. 15. Spezzati G., Benavidez A.D., DeLaRiva A.T. et al. // Appl. Catal. B 2019. V. 243. P. 36.
  16. 16. Branda M.M., Ferrulo R.M., Causà M. et al. // J. Phys. Chem. C. 2011. V. 115. P. 3716.
  17. 17. Sun C., Li H., Chen L. // Energy Environ. Sci. 2012. V. 5. P. 8475.
  18. 18. Bruix A., Lykhach Y., Matolínová I. et al. // Angew. Chem. Int. Ed. 2014. V. 53. P. 10525.
  19. 19. Figueroba A., Kovács G., Bruix A. et al. // Catal. Sci. Technol. 2016. V. 6. P. 6806.
  20. 20. Sk M.A., Kozlov S.M., Lim K.H. et al. // J. Mater. Chem. A. 2014. V. 2. P. 18329.
  21. 21. Kozlov S.M., Neyman K.M. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 7823.
  22. 22. Bruix A., Neyman K.M. How to design models for ceria nanoparticles: challenges and strategies for describing nanostructured reducible oxides. In: Computational Modelling of Nanoparticles. Eds. S.T. Bromley, S.M. Woodley, Series: V. 12: Frontiers of Nanoscience, Oxford: Elsevier. 2019. P. 55–99.
  23. 23. Migani A., Vaysilov G.N., Bromley S.T. et al. // J. Mater. Chem. 2011. V. 20. P. 10535.
  24. 24. Boronat M., López-Ausens T., Corma A. // Surf. Sci. 2016. V. 648. P. 212.
  25. 25. Kresse G. // Phys. Rev. B. 1993. V. 47. P. 558.
  26. 26. Kresse G. // Ibid. 1996. V. 54. P. 11169.
  27. 27. Blöchl P.E. // Ibid. B. 1994. V. 50. P. 17953.
  28. 28. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. P. 1758.
  29. 29. Rohrbach A., Hafner J., Kresse G. // J. Phys.: Condens. Matter. 2003. V. 15. P. 979.
  30. 30. Perdew J.P., Chevary J.A., Vosko S.H. et al. // Phys. Rev. B. 1992. V. 46. P. 6671; Erratum. Phys. Rev. B. 1993. V. 48. P. 4978.
  31. 31. Vayssilov G.N., Migani A., Neyman K. // J. Phys. Chem. C. V. 2011. V. 115 P. 16081.
  32. 32. Bruix A., Migani A., Vayssilov G.N. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 11384.
  33. 33. Migani A., Vayssilov G.N., Bromley S.T. // Chem. Comm. 2010. V. 46. P. 5936.
  34. 34. Branda M.M., Hernández N.C., Sanz J.F. et al. // J. Phys. Chem. C. 2010. V. 114. P. 1934.
  35. 35. Monkhorst H.J., Pack J.D. // Phys. Rev. B. 1976. V. 13. P. 5188.
  36. 36. Nasluzov V.A., Ivanova-Shor E.A., Shor A.M. et al. // Surf. Sci. 2019. V. 681. P. 38.
  37. 37. Chen L.-J., Tang Y., Cui L. et al. // J. Power Sources. 2013. V. 234. P. 69.
  38. 38. Tang Y., Zhang H., Cui L. et al. // Ibid. 2012. V. 197. P. 28.
  39. 39. Preda G., Pacchioni G. // Catal. Today. 2011. V. 177 P. 31.
  40. 40. Shor A.M., Laletina S.S., Ivanova-Shor E.A. et al. // Comp. Theor. Chem. 2018. V. 1144. P. 56.
  41. 41. Klacar S., Hellman A., Panas I. et al. // J. Phys. Chem. C. 2010. V. 114. P. 12610.
  42. 42. Benedetti F., Luches P., Spadaro M.C. et al. // J. Phys. Chem. C. 2015. V. 119. P. 6024.
  43. 43. Наслузов В.А., Нейман К., Шор А.М. и др. // Ж. СФУ. Сер. Химия. 2016. Т. 9. С. 281.
  44. 44. Zhao Y., Teng B.-T., Wen X.-D. et al. // J. Phys. Chem. C. 2012. V. 116. P. 15986.
  45. 45. Preda G., Migani A., Neyman K.M. et al. // Ibid. 2011. V. 115. P. 5817.
  46. 46. Shor A.M., Laletina S.S., Ivanova-Shor E.A. et al. // Surf. Sci. 2014. V. 630. P. 265.
  47. 47. Shimizu K., Kawachi H., Satsuma A. // Appl. Catal. B. 2010. V. 96. P. 169.
  48. 48. Nasluzov V.A., Ivanova-Shor E.A., Shor A.M. et al. // Materials. 2021. V. 14. 6888.
  49. 49. Hulva J., Meier M., Bliem R. et al. // Science. 2021. V. 371. P. 375.
  50. 50. Wu Z., Li M., Overbury S.H. // J. Catal. 2012. V. 285. P. 61.
  51. 51. Chen S., Cao T., Gao Y. et al. // J. Phys. Chem. C 2016. V. 120. P. 21472.
  52. 52. Binet C., Badri A., Boutonnet-Kizling M. et al. // J. Chem. Soc. Faraday Trans. 1994. V. 90. P. 1023.
  53. 53. Kafafi Z.H., Hauge R.H., Billups W.E. et al. // Inorg. Chem. 1984. V. 23. P. 177.
  54. 54. Vayssilov G.N., Mihaylov M., Petkov P.S. et al. // J. Phys. Chem. C. 2011. V. 115. P. 23435.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library