RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Indolo[3,2-b]carbazole Derivatives Exhibiting Hole Conductivity in Organic Light-Emitting Diodes

PII
10.31857/S0044453723050266-1
DOI
10.31857/S0044453723050266
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 5
Pages
645-652
Abstract
A study is performed of the photophysical properties of indolo[3,2-b]carbazole-based compounds synthesized earlier. The charge carrier mobility in the space charge-limited current mode and the energy levels of the highest occupied and lowest unoccupied molecular orbitals in the compounds are determined. It is shown that indolo[3,2-b]carbazole derivatives can be used as hole transporting layers in organic light-emitting diodes.
Keywords
индоло[3,2-<i>b</i>]карбазол подвижность носителей заряда органические светоизлучающие диоды
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Lengvinaite S., Grazulevicius J.V., Grigalevicius S. et al. // Dyes Pigm. 2010. V. 85. P. 183. https://doi.org/10.1016/j.dyepig.2009.10.022
  2. 2. Simokaitiene J., Stanislovaityte E., Grazulevicius J.V. et al. // J. Org. Chem. 2012. V. 77. P. 4924. https://doi.org/10.1021/jo202677j
  3. 3. Stanislovaityte E., Simokaitiene J., Jankauskas V., Grazulevicius J.V. // Tetrahedron. 2014. V. 70. P. 6303. https://doi.org/10.1016/j.tet.2014.04.056
  4. 4. Nan-Xing H., Shuang X., Zoran P. et al. // J. Am. Chem. Soc. – 1999. V. 121. P. 5097. https://doi.org/10.1021/ja9906554
  5. 5. Zhao H.-P., Tao X.-T., Wang P. et al. // Org. Electron. 2007. V. 8. P. 673. https://doi.org/10.1016/j.orgel.2007.05.001
  6. 6. Ting H.-C., Chen Y.-M., You H.-W. et al. // J. Mater. Chem. 2012. V. 22. P. 8399. https://doi.org/10.1039/C2JM30207A
  7. 7. Shi H., Yuan J., Wu X. et al. // New J. Chem. 2014. V. 38. P. 2368. https://doi.org/10.1039/C4NJ00140K
  8. 8. Li Y., Wu Y., Ong B.S. // Macromolecules. 2006. V. 39. P. 6521. https://doi.org/10.1021/ma0612069
  9. 9. Boudreault P.-L.T., Wakim S., Blouin N. et al. // J. Am. Chem. Soc. 2007. V. 129. P. 9125. https://doi.org/10.1021/ja071923y
  10. 10. Boudreault P.-L.T., Wakim S., Tang M.L. et al. // J. Mater. Chem. 2009. V. 19. P. 2921. https://doi.org/10.1039/B900271E
  11. 11. Cai S.Y., Tian G.J., Li X. et al. // J. Mater. Chem. A. 2013. V. 1. P. 11295. https://doi.org/10.1039/C3TA11748K
  12. 12. Qian X., Shao L., Li H. et al. // J. Power Sources. 2016. V. 319. P. 39. https://doi.org/10.1016/j.jpowsour.2016.04.043
  13. 13. Yang H., Li Y. Yuling Z., Shupei Y. et al. // Dyes Pigm. 2021. V. 187. 109096. https://doi.org/10.1016/j.dyepig.2020.109096
  14. 14. Светличный В.М., Александрова Е.Л., Мягкова Л.А. и др. // Физ. и техн. полупроводников. 2010. Т. 44. № 12. С. 1629. https://doi.org/10.1134/S1063782610120080
  15. 15. Светличный В.М., Александрова Е.Л., Мягкова Л.А. и др. // Там же. 2011. Т. 45. № 10. С. 1392. https://doi.org/10.1134/S1063782611100204
  16. 16. Dmitriyev A.V., Yusupov A.R., Irgashev R.A. et al. // Inorg. Mater. Appl. Res. 2017. V. 8. P. 172. https://doi.org/10.1134/S2075113317010105
  17. 17. Степарук А.С., Толщина С.Г., Казин Н.А. и др. // Изв. АН, Сер. хим. 2021. № 6. С. 1109. https://doi.org/10.1007/s11172-021-3191-6
  18. 18. Irgashev R.A., Kazin N.A., Rusinov G.L. et al. // Tet. Lett. 2017. V. 58. P. 3139. https://doi.org/10.1016/j.tetlet.2017.06.085
  19. 19. Zhang Y., Ma Y., Kong L. et al. // Dyes Pigm. 2018. V. 159. P. 314. https://doi.org/10.1016/j.dyepig.2018.06.040
  20. 20. Kühn M., Pflumm C., Glaser T. et al. // Org. Electron. 2017. V. 47. P. 79. https://doi.org/10.1016/j.orgel.2016.11.018
  21. 21. Youn J.H., Baek S.J., Kim H.P. et al. // J. Mater. Chem. C. 2013. V. 1. P. 3250 https://doi.org/10.1039/C3TC00855J
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library