- PII
- 10.31857/S004445372306002X-1
- DOI
- 10.31857/S004445372306002X
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 97 / Issue number 6
- Pages
- 843-849
- Abstract
- The evolution of the electronic absorption spectra of substituted aluminum phthalocyanine incorporated into a nanoporous silicate gel matrix has been studied. The decomposition of the contour of the long-wavelength Q-absorption band of molecules into Voigt components reveals the dependence of the formation of various types of impurity sites in the matrix nanopores, which act as a solid-state nanoreactor, on the drying time of the matrix. Possible mechanisms of the effect of the internal structure of the synthesized silicate material during the transition from a sol state to a dried xerogel state on the spectral properties of phthalocyanine impurity molecules are discussed. Models of the interaction of the impurity molecules with the surface of the matrix nanopores during drying are considered; the features of the evolution of the resulting impurity sites are elucidated.
- Keywords
- : металлофталоцианин золь–гель-матрица нанореактор примесный центр электронные спектры поглощения фойгтовские компоненты полосы
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 7
References
- 1. Hench L.L., West J.K. // Chem. Rev. 1990. V. 90. № 1. P. 33. https://doi.org/10.1021/cr00099a003
- 2. Арабей С.М., Павич Т.А., Станишевский И.В., Crepin C. // Журн. прикл. спектроскопии. 2022. Т. 89. № 2. С. 145. https://doi.org/10.47612/0514-7506-2022-89-2-145-152
- 3. Komori T., Amao Y. // J. Porph. Phthal. 2003. V. 7. № 2. P. 131. https://doi.org/10.1142/S1088424603000185
- 4. Anctil A., Landi B.J., Raffaelle R.P. // 34th IEEE Photovoltaic Specialists Conference: (PVSC 2009); Philadelphia, Pennsylvania, USA, 7–12 June 2009 / 2009. P. 1344.
- 5. Frackowiak D., Wiktorowicz K., Planner A. et al. // Intern. J. Photoenergy. 2002. V. 4. № 2. P. 51. https://doi.org/10.1155/S1110662X02000090
- 6. Frackowiak D., Ion R.-M., Waszkowiak A. // J. Phys. Chem. B. 2002. V. 106. № 51. P. 13154. https://doi.org/10.1021/jp0212592
- 7. Павич Т.А., Арабей С.М., Соловьев К.Н. // Журн. прикл. спектроскопии. 2018. Т. 85. № 1. С. 5.
- 8. Павич Т.А., Станишевский И.В., Кожич Д.Т. и др. // Там же. 2020. Т. 87. № 4. С. 611
- 9. Matlab. [Электронный ресурс]. Режим доступа: https://en.wikipedia.org/wiki/Matlab.
- 10. Scilab. [Электронный ресурс]. Режим доступа: https://en.wikipedia.org/wiki/Scilab.
- 11. Abrarov S.M., Quine B.M. // Appl. Mathem. Comput. 2011. V. 218. № 5. P. 1894. https://doi.org/10.1016/j.amc.2011.06.072
- 12. Abrarov S.M., Quine B.M. // arXiv:1205.1768v1 [math.NA]. 2012. https://doi.org/10.48550/arXiv.1205.1768.
- 13. Gao F., Han L. // Comput. Optim. Appl. 2012. V. 51. № 1. P. 259.https://doi.org/10.1007/s10589-010-9329-3
- 14. Waszkowiak A., Frackowiak D., Wiktorowicz K., Miyake J. // Acta Biochim. Pol. 2002. V. 49. № 3. P. 633. https://doi.org/10.18388/abp.2002_3772
- 15. Lapkina L.A., Konstantinov N.Yu., Larchenko V.E. et al. // J. Porphyrins Phthalocyanines. 2009. V. 13. P. 859. https://doi.org/10.1142/S108842460900005X
- 16. Лапкина Л.А., Киракосян Г.А., Ларченко В.Е. и др.// Журн. неорган. химии. 2020. Т. 65. № 2. С. 179.
- 17. Lever A.B.P. // Adv. Inorg. Chem. Radiochem. 1965. V. 7. P. 27. https://doi.org/10.1016/S0065-2792 (08)60314-3
- 18. Eastwood D., Edwards L., Gouterman M., Steinfeld J. / J. Mol. Spectrosc. 1966. V. 20. № 4. P. 381. https://doi.org/10.1016/0022-2852 (66)90009-9
- 19. Fitch P.S.H., Haynam C.A., Levy D.H. // J. Chem. Phys. 1980. V. 73. № 3. P. 1064. https://doi.org/10.1063/1.440278
- 20. Киселев В.Ф. Поверхностные явления в полупроводниках и диэлектриках. М.: Наука, 1970. 399 с.
- 21. Киселев В.Ф. / Докл. АН СССР. 1967. Т. 176. № 1. С. 124.