RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Molecular Dynamics Simulation of Diisopropyl Ether Using Various Interatomic Potentials

PII
10.31857/S0044453723060092-1
DOI
10.31857/S0044453723060092
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 6
Pages
836-842
Abstract
A comparative assessment of the accuracy of determining the density and viscosity has been carried out for diisopropyl ether using the method of classical molecular dynamics using three potentials. The accuracy of determining the viscosity coefficients when using equilibrium and nonequilibrium calculation methods was also investigated.
Keywords
диизопропиловый эфир молекулярная динамика межатомный потенциал вязкость
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Campos Assuncao M., Cote G., Andre M. et al. // RSC Adv. 2017. № 7. P. 6922.
  2. 2. Miran Milošević, Boelo Schuur, Andre B. De Haan // Chemical engineering transactions. 2011. V. 24. P. 733.
  3. 3. Kristina Søborg Pedersen, Karin Michaelsen Nielsen, Jesper Fonslet et al. // Solvent Extraction and Ion Exchange. 2019. V. 37. № 5. P. 376.
  4. 4. Piñeiro Á. // Fluid Phase Equilib. 2004. V. 216. P. 245.
  5. 5. Kammerer K., Lichtenthaler R.N. // Thermochim. Acta. 1998. V. 310. P. 61.
  6. 6. Xianyang Meng, Jiangtao Wu, Zhigang Liu // J. Chem. Eng. 2009. V. 54. № 9. P. 2353.
  7. 7. Mohammed Rashid Ali, Noor Asma Fazli Abdul Samad // Physics and Chemistry of Liquids. 2021. V. 59. № 4. P. 1.
  8. 8. Gui Liu, Zhongwei Zhao, Ahmad Ghahreman // Hydrometallurgy. 2019. V. 187. P. 81.
  9. 9. Xue-Qiang Zhang, Qi Jin, Yi-Ling Nan et al. // Angew. Chem. Int. Ed. 2021. V. 60. P. 15503.
  10. 10. Wei-Jing Chen, Chang-Xin Zhao, Bo-Quan Li et al. // Energy Environ. Mater. 2020. V. 3. P. 160.
  11. 11. Manju Rani, Sanjeev Maken, So Jin Park // Korean J. Chem. Eng. 2019. V. 36. № 9. P. 1401.
  12. 12. Гурина Д.Л., Антипова М.Л., Петренко В.Е. // Журн. физ. химии. 2011. Т. 85. № 5. С. 885.
  13. 13. Антипова М.Л., Петренко В.Е. // Там же. 2013. Т. 87. № 7. С. 1196.
  14. 14. Ланкин А.В., Норман Г.Э., Орехов М.А. // Там же. 2016. Т. 90. № 5. С. 710.
  15. 15. Orekhov N., Kondratyuk N., Logunov M. et al. // Cryst. Growth Des. 2021. V. 21. № 4. P. 1984.
  16. 16. Gupta A.K. // Mater. Today Proc. 2021. V. 44. P. 2380.
  17. 17. Min Zhou, Ke Cheng, Guo-Zhu Jia // J. Mol. Liq. 2017. V. 230. P. 137.
  18. 18. Раззоков Д., Исмаилова О.Б., Маматкулов Ш.И. и др. // Журн. физ. химии. 2014. Т. 88. № 9. С. 1339.
  19. 19. Ewen J., Gattinoni C., Thakkar F. et al. // Materials. 2016. V. 9. № 8. P. 651.
  20. 20. Glova A.D., Volgin I.V., Nazarychev V.M. et al. // RSC Adv. 2019. V. 9. № 66. P. 38834.
  21. 21. Orekhov N., Ostroumova G., Stegailov V. // Carbon. 2020. V. 170. P. 606.
  22. 22. Nazarychev V.M., Glova A.D., Volgin I.V. et al. // Int. J. Heat Mass Transf. 2021. V. 165. P. 120639.
  23. 23. Ruochen Sun, Hui Qi, Pingan Liu et al. // J. Mol. Eng. Mat. 2020. V. 8. P. 2050001.
  24. 24. Yasen Dai, Zhengrun Chen, Xingyi Liu et al. // Separation and Purification Technology. 2021. V. 279. P. 119717.
  25. 25. Ponder J.W., Case D.A. // Adv. Prot. Chem. 2003. V. 66. P. 27.
  26. 26. Jorgensen W.L., Maxwell D.S., Tirado-Rives J. // J. Am. Chem. Soc. 1996. V. 118. № 45. P. 11225.
  27. 27. Vanommeslaeghe K., Hatcher E., Acharya C. et al. // J. Comput. Chem. 2010. V. 31. P. 671.
  28. 28. Walker R.C., Crowley M.F., Case D.A. // J. Comput. Chem. 2008. V. 29. P. 1019.
  29. 29. Wang J., Wang W., Kollman P.A. et al. // J. of Molecular Graphics and Modelling. 2006. V. 25.
  30. 30. Wang J., Wolf R.M., Caldwell J. et al. // J. Comput. Chem., 2004. V. 25. P. 1157.
  31. 31. Dodda L.S., Cabeza de Vaca I., Tirado-Rives J. et al. // Nucleic Acids Res. 2017. V. 45. № W1. P. W331.
  32. 32. William J.L., Tirado-Rives J. // Proc. Natl. Acad. Sci. U.S.A. 2005. V. 102. № 19. P. 6665.
  33. 33. Dodda L.S., Vilseck J.Z., Tirado-Rives J. et al. // J. Phys. Chem. B. 2017. V. 121. № 15. P. 3864.
  34. 34. Jo S., Kim T., Iyer V.G. et al. // J. Comput. Chem. 2008. V. 29. P. 1859.
  35. 35. Brooks B.R., Brooks C.L. III, MacKerell A.D. Jr. et al. // J. Comput. Chem. 2009. V. 30. P. 1545.
  36. 36. Lee J., Cheng X., Swails J.M. et al. // J. Chem. Theory Comput. 2016. V. 12. P. 405.
  37. 37. Lorentz H.A. // Ann. Phys. 1881. V. 248. P. 127.
  38. 38. Berthelot D.C.R. // Seances Acad. Sci. 1889. V. 126. P. 1703.
  39. 39. Good R.J., Hope C.J. // J. Chem. Phys. 1970. V. 53. P. 540.
  40. 40. Good R.J., Hope C.J. // Ibid. 1971. V. 55. P. 111.
  41. 41. Abraham M.J., Murtola T., Schulz R. et al. // SoftwareX. 2015. V. 1. P. 19.
  42. 42. Bussia G., Donadio D., and Parrinello M. // J. Phys. Chem. 2007. V. 126.
  43. 43. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F. et al. // J. Chem. Phys. 1984. V. 81. № 8. P. 3684.
  44. 44. Sun H. // J. Phys. Chem. B. 1998. V. 102. № 38. P. 7338.
  45. 45. Essmann U., Perera L., Berkowitz M. et al. // J. Chem. Phys. 1995. V. 103. P. 8577.
  46. 46. Green M.S. // J. Chem. Phys. 1954. V. 22. № 3. P. 398.
  47. 47. Kubo R. // J. Phys. Soc. Jpn. 1957. V. 12. № 6. P. 570.
  48. 48. Hess B. // J. Chem. Phys. 2002. V. 116. P. 209.
  49. 49. Xianyang Meng, Jiangtao Wu, Zhigang Liu // J. Chem. Eng. 2009. V. 54. P. 2353.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library