RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Fe- and Cu–Zn-Containing Catalysts Based on Natural Aluminosilicate Nanotubes and Zeolite H-ZSM-5 in the Hydrogenation of Carbon Dioxide

PII
10.31857/S0044453723070270-1
DOI
10.31857/S0044453723070270
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 7
Pages
952-959
Abstract
Iron- and Cu–Zn-containing carbon dioxide hydrogenation catalysts based on natural aluminosilicate nanotubes and zeolite H-ZSM-5 are synthesized. Their textural and acidic properties are studied via low-temperature nitrogen adsorption–desorption, temperature-programmed desorption of ammonia, temperature-programmed reduction of hydrogen, and elemental analysis. The effect the temperatures of the reaction have on the conversion of CO2 and distribution of its product is studied. Catalysts based on aluminosilicate halloysite nanotubes exhibit methanol and С2–С4 hydrocarbon selectivities of 88 and 16%, respectively.
Keywords
галлуазит метанол углекислый газ олефины H-ZSM-5 Fe Cu<i>-</i>Zn
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Yang H., Xu Z., Fan M. et al. // J. of Environmental Sciences. 2008. V. 20. № 1. P. 14–27.
  2. 2. Mikkelsen M., Jørgensen M., Krebs F.C. // Energy and Environmental Science. 2010. V. 3. № 1. P. 43–81.
  3. 3. Férey G., Serre C., Devic T. et al. // Chemical Society Reviews. 2011. V. 40. № 2. P. 550–562. https://doi.org/10.1039/c0cs00040j
  4. 4. Hunt A.J., Sin E.H.K., Marriott R., Clark J.H. // ChemSusChem. 2010. V. 3. № 3. P. 306–322.
  5. 5. Centi G., Perathoner S. // Studies in Surface Science and Catalysis. 2004. V. 153. P. 1–8.
  6. 6. Sai Prasad P.S., Bae J.W., Jun K.W., Lee K.W. // Catalysis Surveys from Asia. 2008. V. 12. № 3. P. 170–183.
  7. 7. Evdokimenko N.D., Kustov A.L., Kim K.O. et al. // Functional Materials Letters. 2020. V. 13. № 4. P. 2040004.
  8. 8. Bogdan V.I., Koklin A.E., Kustov A.L. et al. // Molecules. 2021. V. 26. № 10. P. 2883.
  9. 9. Kovalskii A.M., Volkov I.N., Evdokimenko N.D. et al. // Applied Catalysis B: Environmental. 2022. V. 303. P. 120891.
  10. 10. Konopatsky A.S., Firestein K.L., Evdokimenko N.D. et al. // J. of Catalysis. 2021. V. 402. P. 130.
  11. 11. Frontera P., Macario A., Malara A. et al. // Functional Materials Letters. 2018. V. 11. № 5. P. 1850061.
  12. 12. Evdokimenko N., Yermekova Z., Roslyakov S. et al. // Materials. 2022. V. 15. № 15. P. 5129.
  13. 13. Ye R.P., Ding J., Gong W. et al. // Nature Communications. 2019. V. 10. № 1. P. 1–15.
  14. 14. Wang G., Mao D., Guo X., Yu J. // International Journal of Hydrogen Energy. 2019. V. 44. № 8. P. 4197–4207.
  15. 15. Tursunov O., Kustov L., Kustov A. // Oil and Gas Science and Technology. 2017. V. 72. № 5. P. 30.
  16. 16. Evdokimenko N.D., Kapustin G.I., Tkachenko O.P. et al. // Molecules. 2022. V. 27. № 3. P. 1065.
  17. 17. Li Z., Qu Y., Wang J. et al. // Joule. 2019. V. 3. № 2. P. 570.
  18. 18. Rafiee A., Khalilpour K.R., Milani D. et al. // J. of Environmental Chemical Engineering. 2018. V. 6. № 5. P. 5771.
  19. 19. Ni Y., Chen Z., Fu Y. et al. // Nature Communications. 2018. V. 9. № 1. P. 1.
  20. 20. Wang Y., Tan L., Tan M. et al. // ACS Catalysis. 2019. V. 9. № 2. P. 895.
  21. 21. Li Z., Wang J., Qu Y. et al. // Ibid. 2017. V. 7. № 12. P. 8544.
  22. 22. Gao P., Li S., Bu X. et al. // Nature Chemistry. 2017. V. 9. № 10. P. 1019.
  23. 23. Wang J., Zhang A., Jiang X. et al. // J.of CO2 Utilization. 2018. V. 27. № 2. V. 81.
  24. 24. Liu X., Wang M., Zhou C. // Chemical Communications. 2017. V. 54. № 2. P. 140.
  25. 25. Gao P., Dang S., Li S. et al. // ACS Catalysis. 2018. V. 8. № 1. P. 57.
  26. 26. Wang J., You Z., Zhang Q. et al. // Catalysis today. 2013. V. 215. P. 18.
  27. 27. Wei J., Ge Q., Yao R. et al. // Nature communications. 2017. V. 8. № 1. P. 1.
  28. 28. Rubtsova M., Smirnova E., Boev S. et al. // Microporous and Mesoporous Materials. 2022. V. 330. № 8. P. 111622.
  29. 29. Afokin M.I., Smirnova E.M., Starozhitskaya A.V. et al. // Chemistry and Technology of Fuels and Oils. 2020. V. 55. № 6. P. 682.
  30. 30. Demikhova N.R., Boev S.S., Reshetina M.V. et al. // Petroleum Chemistry. 2021. V. 61. № 10. P. 1085.
  31. 31. Smirnova E.M., Melnikov D.P., Demikhova N.R. et al. // Petroleum Chemistry. 2021. V. 61. № 7. P. 773.
  32. 32. Glotov A., Vutolkina A., Pimerzin A. et al. // Chemical Society Reviews. 2021. V. 50. № 16. P. 9240.
  33. 33. Mosallanejad S., Dlugogorski B.Z., Kennedy E.M. et al. // ACS Omega. 2018. V. 3. № 5. P. 5362.
  34. 34. Zhu N., Lian Z., Zhang Y. et al. // Applied Surface Science. 2019. V. 483. P. 536.
  35. 35. Oseke G.G., Atta A.Y., Mukhtar B. et al. // J. of King Saud University-Engineering Sciences. 2021. V. 33. № 8. P. 531.
  36. 36. Ayodele O.B., Tasfy S.F.H., Zabidi N.A.M. et al. // J. of CO2 Utilization. 2017. V. 17. P. 273.
  37. 37. Liu Y., Zhang Y., Wang T., Tsubaki N. // Chemistry Letters. 2007. V. 36. № 9. P. 1182.
  38. 38. Cui W.-G., Li Y.-Т., Yu L. et al. // ACS applied materials & interfaces. 2021. V. 13. № 16. P. 18693.
  39. 39. Li C., Yuan X., Fujimoto K. // Applied Catalysis A: General. 2014. V. 469. P. 306.
  40. 40. Kim K.O., Evdokimenko N.D., Pribytkov P.V. et al. // Rus. J. of Physical Chemistry A. 2021. V. 95. № 12. P. 2422.
  41. 41. Bansode A., Urakawa A. // J. of Catalysis. 2014. V. 309. P. 66.
  42. 42. Liu R., Ma Z., Sears J.D. et al. // J. of CO2 Utilization. 2020. V. 41. P. 101290.
  43. 43. Dorner R.W., Hardy D.R., Williams F.W. et al. // Applied Catalysis A: General. 2010. V. 373. № 1–2. P. 112.
  44. 44. Lan L., Wang A., Wang Y. // Catalysis Communications. 2019. V. 130. P. 105761.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library