- PII
- 10.31857/S0044453723080083-1
- DOI
- 10.31857/S0044453723080083
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 97 / Issue number 8
- Pages
- 1200-1206
- Abstract
- An experimental study is performed of the mechanism of sulfur dioxide–hydrogen interaction (4Н2 + 2SО2 → S2 + 4H2О) at temperatures of 623, 673, 723, and 773 K and a pressure of 198 Torr. The mechanism is analyzed via mathematical modeling. It is found to be a chain reaction of hydrogen oxidation with sulfur dioxide, which results in the formation of molecular sulfur (S2). The process is characterized by negative Gibbs free energy ΔG723 = −49.950 kcal/mol. The potential energy surface of the (HOSO + HOSO) system is studied by various means of quantum chemistry, and the thermodynamic parameters of the НОSO + НОSO → SO + SO2 + Н2О reaction are determined. A new mechanism of the reaction, supplemented by elementary acts, is discussed. Good agreement is found between energies of activation determined experimentally and calculated using data from our numerical kinetic analysis.
- Keywords
- сера сернистый ангидрид цепная реакция кинетический анализ
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 9
References
- 1. Справочник компании // Норникель 2017 г.
- 2. Елисеев А.В. // Изв. РAH. Физикa aтмocфepы и oкeaнa. 2015. Т. 51. № 6. С. 673.
- 3. Елисеев А.В., Чжан М., Гизатуллин Р.Д., Алтухова А.В. // Изв. РAH. Физикa aтмocфepы и oкeaнa. 2019. Т. 55. № 1. С. 41.
- 4. Хайрулин С.Р., Керженцев М.А., Яшкин С.А. и др. // Химия в интересах устойчивого развития. 2015. Т. 23. С. 469.
- 5. Rasmusen G.L., Glarborg P., Marshal P. // Proc. Combustion Inst. 2007. V. 31. P. 339.
- 6. Гукасян П.С. // Хим. журн. Армении. 2009. Т. 61. № 3–4. С. 303.
- 7. Mantashyan A.A., Wang H., Avetisyan A.M., Makaryan E.M. // Хим. журн. Армении. 2006. V. 59. № 4. P. 35.
- 8. Mantashyan A.A. // Rus. J. of Physical Chemistry A. 2021. V. 15. № 1. P. 233.
- 9. Манташян А.А., Макарян Э.М., Аракелян Л.С. // Физика горения и взрыва. 2019. Т. 55. № 2. С. 3.
- 10. Гукасян П.С., Макарян Э., Давтян А., Арутюнян А. // Хим. журн. Армении. 2022. Т. 75. № 1. С. 3.
- 11. Han G.B., Park N.-K., Lee T.J. // Ind. Eng. Chem. Res. 2009. V. 48. № 23. P. 10307.
- 12. Ishiguro A., Lio X., Nakajima T. // J. Catal. 2002. V. 206. № 1. P. 159.
- 13. Zhu T., Draher A., Flytzani-Stephanopoulos M. // Appl. Catal. B: Environ. 1999. V. 21. P. 103.
- 14. Han G.B., Park N.-K., Yoon S.H., Lee T.J. // Ind. Eng. Chem. Res. 2008. V. 47. № 14. P. 4658.
- 15. Weigang Wang, Mingyuan Liu, Tiantian Wang & andere // Nature Communications. 2021. V. 10. P. 1.
- 16. Lutz A.E., Kee R.J., Miller J.A. SENKIN: A FORTRAN-Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis // Sandia Nat. Lab. Rep. SAND-87-8248. Livermore, CA, 1987. Available at: http: www.osti.gov/scitech/biblio/5371815.
- 17. Blitz M.A., Hughes K.J., Pilling M.J., Robertson S.H. // J. Phys. Chem. A. 2006. V. 110. P. 2996.
- 18. Stickel R.E., Chin M., Daykin E.P. et al. // J. Phys. Chem. 1993. V. 97. P. 13653.
- 19. Baulch D.L., Drysdale D.D., Horne D.G. // Symp. Int. Combust. Proc. 1973. V. 14. P. 107.
- 20. Schofield K. // J. Phys. Chem. Ref. Data.1973. V. 2. P. 25.
- 21. Sutherland J.W., Michael J.V., Pirraglia A.N. et al. // Symp. Int. Combust. Proc. 1988. Issue 1. V. 21. P. 929.
- 22. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
- 23. Montgomery J.A., Frisch M.J., Ochterski J.W., & Petersson G. A. // Ibid. 2000.V. 112 (15). P. 6532.
- 24. Frisch M.J., Head-Gordon M., and Pople J.A. // Chem. Phys. Lett. 1990. V. 166. P. 275. https://doi.org/10.1016/0009-2614 (90)80029-D
- 25. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 16, Revision C.01.Gaussian Inc. Wallingford CT, 2016.
- 26. Dennington R., Keith T.A., Millam J.M. Gauss View Version 6. Semichem Inc., Shawnee Mission, KS. 2016.