RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Calculating the Gibbs Energy of Solvation of Pyridine in Nonaqueous Solvents

PII
10.31857/S0044453723080125-1
DOI
10.31857/S0044453723080125
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 8
Pages
1084-1086
Abstract
Gibbs energies of the solvation of pyridine (Py) in methanol, acetonitrile, and N,N-dimethylformamide are calculated via quantum chemical modeling. Contributions from universal and specific types of interaction between the Py and solvent molecules to the change in the Gibbs energies of solvation of the aromatic heterocycle are determined when alcohol is replaced with aprotic solvents.
Keywords
квантово-химические расчеты энергия Гиббса сольватация пиридин неводные растворители
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Шарнин В.А., Усачева Т.Р., Кузьмина И.А. и др. Комплексообразование в неводных средах: Сольватационный подход к описанию роли растворителя. М.: ЛЕНАНД, 2019. 304 с.
  2. 2. Pathania S., Rawal R.K. // Eur. J. Med. Chem. 2018. V. 157. P. 503. https://doi.org/10.1016/j.ejmech.2018.08.023
  3. 3. Матис М.Е., Шмырова А.А., Малых У.В. и др. // Изв. вузов. Химия и хим. технология. 2021. Т. 64. № 10. С. 132. https://doi.org/10.6060/ivkkt.20216410.6489
  4. 4. Pal S. Pyridine: A useful ligand in transition metal complexes // Pyridine. 2018. P. 57–74. https://doi.org/10.5772/intechopen.76986
  5. 5. Nikolaev A., Legault C.Y., Minhao Z., Orellana A. // Org. Lett. 2018. V. 20. № 3. P. 796. https://doi.org/10.1021/acs.orglett.7b03938
  6. 6. Wong V.C.-H., Po C., Leung S.Y.-L. et al. // J. Am. Chem. Soc. 2018. V. 140. № 2. P. 657. https://doi.org/10.1021/jacs.7b09770
  7. 7. Liske A., Wallbaum L., Hölzel T. et al. // Inorg. Chem. 2019. V. 58. № 9. P. 5433. https://doi.org/10.1021/acs.inorgchem.9b00337
  8. 8. Gould N.S., Li S., Cho H.J. et al. // Nat. Commun. 2020. V. 11. P. 1060. https://doi.org/10.1038/s41467-020-14860-6
  9. 9. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03, Revision B.03 – Gaussian, Inc., Pittsburgh PA, 2003.
  10. 10. Becke A.D. // J. Phys. Rev. A: At., Mol., Opt. Phys. 1988. V. 38. № 6. P. 3098.
  11. 11. Stephens P.J., Devlin F.J., Chablowski C.F., Frisch M.J. // J. Chem. Phys. 1994. V. 98. № 45. P. 11623.
  12. 12. Hertwig R.H., Koch W. // J. Chem. Phys. Lett. 1997. V. 268. № 5. P. 345.
  13. 13. Dunning T.H. // J. Chem. Phys. 1989. V. 90. № 2. P. 1007.
  14. 14. Zhurko G.A., Zhurko D.A. ChemCraft version 1.6 (build 312) ed. http://www.chemcraftprog.com/index.html
  15. 15. Foresman J.B., Keith T.A., Wiberg K.B. et al. // J. Chem. Phys. 1996. V. 100. № 40. P. 16098.
  16. 16. Kuz’mina I.A., Kovanova M.A. // J. Mol. Liq. 2022. V. 349. P. 118112. https://doi.org/10.1016/j.molliq.2021.118112
  17. 17. Мошорин Г.В., Репкин Г.И., Шарнин В.А. // Журн. физ. химии. 2010. Т. 84. № 4. С. 618.
  18. 18. Фиалков Ю.А. Не только в воде. Л.: Химия, 1989. 88 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library