RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Thermodynamic and High-Temperature Properties of KFe0.33W1.67O6

PII
10.31857/S0044453723080265-1
DOI
10.31857/S0044453723080265
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 8
Pages
1087-1096
Abstract
This paper presents the results of a study of the KFe0.33W1.67O6 system. The compound was obtained by a solid-phase synthesis method at a temperature of 1073 K. The structural, morphological, and spectroscopic properties of KFe0.33W1.67O6 were characterized using XRD, SEM-EDS. The compound crystallizes in a cubic lattice with the space group Fd–3m (227). The obtained lattice parameter a = 10.3697 (3) Å. The phase transitions of KFe0.33W1.67O6 were determined by low-temperature and high-temperature X-ray diffraction. The temperature dependence of heat capacity of KFe0.33W1.67O6 has been measured for the first time in the range from 5 to 638 K by precision adiabatic vacuum calorimetry and differential scanning calorimetry. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity C∘p∘(T), enthalpy H°(T) − H°(0), entropy S°(T) − S°(0), and Gibbs function G°(T) − H°(0), for the range from T → 0 to 630 K.
Keywords
пирохлор KFe<sub>0.33</sub>W<sub>1.67</sub>O<sub>6</sub> адиабатическая вакуумная калориметрия теплоемкость термодинамические функции
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Deepa M., Prabhakar Rao P., Radhakrishnan A.N. et al. // Mater.Res.Bull. 2009. V. 44. P. 1481.
  2. 2. Sibi K.S., Radhakrishnan A.N., Deepa M. et al. // Solid State Ion. 2009. V. 180. P. 1164.
  3. 3. Díaz-Guillén J.A., Fuentes A.F., Díaz-Guillén M.R. et al. // J. Power Sources. 2009. V. 186. P. 349.
  4. 4. Knoke G.T., Niazi A., Hil J.M. et al. // Matter Mater. Phys. 2007. V. 76. P. 054439–1.
  5. 5. Hirayama M., Sonoyama N., Yamada A. et al. // J. Lumin. 2008. V. 128. P. 1819.
  6. 6. Zhang A., Lu M., Yang Z. et al. // Solid State Sci. 2008. V. 10. P. 74.
  7. 7. Ewing R.C. // Proc. Natl. Acad. Sci. U.S.A. 1999. V. 96. P. 3432.
  8. 8. Ewing R.C., Weber W.J., Lian J. // J. Appl. Phys. 2004. V. 95. P. 5949.
  9. 9. Ringwood A.E., Kesson S.E., Ware N.G. et al. // Nature. 1979. V. 278. P. 219.
  10. 10. Shlyakhtina A.V., Abrantes J.C.C., Levchenko A.V. et al. // Solid State Ion. 2006. V. 177. P. 1149.
  11. 11. Abrantes J.C.C., Levchenko A., Shlyakhtina A.V. et al. // Solid State Ion. 2006. V. 177. P. 1785.
  12. 12. Shlyakhtina A.V., Abrantes J.C.C., Levchenko A.V. et al. // Mater. Sci. Forum. 2006. V. 515. P. 422.
  13. 13. Shlyakhtina A.V., Knotko A.V., Boguslavskii M.V. et al. // Solid State Ion. 2006. V. 176. P. 2297.
  14. 14. Sohn J.M., Kim M.R., Woo S.I. // Catal. Today. 2003. V. 83. P. 289.
  15. 15. Ting-ting T., Li-xi W., Qi-tu Z. // J. Alloy. Compd. 2009. V. 486. P. 606.
  16. 16. Guje R., Ravi G., Palla S. et al. // Mater. Sci. Eng. B. 2015. V. 198. P. 1.
  17. 17. Ravi G., Sravan Kumar K., Guje R. et al. // J Solid State Chem. 2016. V. 233. P. 342.
  18. 18. Ravi R., Palla S., Kumar Veldurthi N. et al. // Int. J. Hydrog. Energy. 2014. V. 39. P. 15352e.
  19. 19. Knyazev A.V., Tananaev I.G., Kuznetsova N.Yu. et al. // Thermochim Acta. 2010. V. 499. P. 155.
  20. 20. Knyazev A.V., Mączka M., Kuznetsova N.Yu. et al. // J. Therm. Anal. Calorim. 2009. V. 98. P. 843.
  21. 21. Knyazev A.V., Chernorukov N.G., Smirnova N.N. et al. // Thermochim Acta. 2008. V. 470. P. 47.
  22. 22. Knyazev A.V., Paraguassu W., Blokhina A.G. et al. // Thermodynamic and spectroscopic properties of KNbTeO6. J. Chem. Thermodynamics. 2017. V. 107. P. 26.
  23. 23. Coelho A.A. // J. Appl. Crystallogr. 2018. V. 51. P. 210.
  24. 24. Smirnova N.N., Letyanina I.A., Larina V.N. et al. // Chem. Thermodyn. 2009. V. 41. P. 46.
  25. 25. Babel D., Pausewang D., Viebahn W. et al. // Z NATURFORSCH B. 1967. V. 22. P. 1219.
  26. 26. Chase M.W. NIST-JANAF thermochemical tables (Monograph 9) // J. Phys. Chem. Ref. Data 1998. P. 59.
  27. 27. Cox J.D., Wagman D.D., Medvedev V.A. Codata Key Values for Thermodynamics. New York, 1984. 60 p.
  28. 28. Mączka M., Knyazev A.V., Kuznetsova N.Yu. et al. // J. Raman Spectrosc. 2011. V. 42. P. 529.
  29. 29. Knyazev A.V., Mączka M., Kuznetsova N.Yu. // Thermochim Acta. 2010. V. 506. P. 20.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library