RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Electron Capture Dissociation by Triclocarban Molecules

PII
10.31857/S0044453723090029-1
DOI
10.31857/S0044453723090029
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 9
Pages
1254-1261
Abstract
The formation and decay of molecular negative ions (MNIs) formed during resonant scattering of electrons by triclocarban molecules were studied by dissoiative electron attachment (DEA) spectroscopy. The most intense channel observed in the mass spectrum are MNIs formed at the thermal energy of trapped electrons with a lifetime relative to electron autodetachment of ~2800 μs. The experimental results were interpreted using CAM-B3LYP/6-311+G(d,p) calculations, which made it possible to reveal a number of important features of the geometry of molecular and fragment negative ions. Namely, the most stable geometry of MNIs is such that one of the chlorine atoms is coordinated with two hydrogen atoms of the structural element of urea. The charge on the chlorine atom is ~–0.7e–, which allows us to interpret this state as the result of the “roaming” of the chlorine atom in the MNI. According to calculations, the adiabatic electron affinity (EAa) of the triclocarban molecule is 1.66 eV. Evaluation of EAa in a simple Arrhenius approximation gives 1.2–1.4 eV. An analysis of the potential of the appearance of fragment ions with a C6H3Cl2NH2 structure made it possible to discover the noncovalent structure of these pseudo-MNIs, in which the chlorine atom is coordinated with two hydrogen atoms of the amino group.
Keywords
диссоциативный захват электрона долгоживущие молекулярные отрицательные ионы автоотщепление электрона триклокарбан сродство к электрону теория функционала плотности
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Yun H., Liang B., Kong D., Li X., Wang A. // J. of Hazardous Materials. 2020. V. 387. P. 121944.
  2. 2. Gregory N.L. // Nature. 1966. V. 212. P. 1460.
  3. 3. Recknagel R.O., Glende Jr, E.A., Dolak J.A., Waller R.L. // Pharmacology & therapeutics. 1989. V. 43. P. 139.
  4. 4. Schulz G.J. // Reviews of Modern Physics. 1973. V. 453. P. 423.
  5. 5. Christophorou L.G. // Electron-molecule interactions and their applications.Orlando: Academic Press, 1984.
  6. 6. Illenberger E., Momigny J. // Gaseous molecular ions. An introduction to elementary processes induced by ionization. Steinkopff Verlag Darmstadt. New York: Springer-Verlag, 1992.
  7. 7. Pshenichnyuk S.A., Komolov A.S. // The J. of Phys. Chem.B. 2017. V. 121. P. 749.
  8. 8. Pshenichnyuk S.A., Modelli A., Lazneva E.F., Komolov A.S. // Ibid. 2016. V. 120. P. 12098.
  9. 9. Pshenichnyuk S.A., Modelli A., Asfandiarov N.L. et al. // Phys. Rev. Research. 2020. V. 2. P. 012030(R).
  10. 10. Beynon J.H. Mass Spectrometry and Its Application to Organic Chemistry. Amsterdam: Elsevier, 1960.
  11. 11. Kassem S., van Leeuwen T., Lubbe A.S. et al. // Chemical Society Reviews. 2017. V. 46. P. 2592.
  12. 12. Baroncini M., Silvi S., Credi A. // Chemical reviews. 2019. V. 120. P. 200.
  13. 13. Pshenichnyuk S.A., Asfandiarov N.L., Kukhta A.V. // Physical Review A. 2012. V. 86. P. 052710.
  14. 14. Pshenichnyuk S.A., Asfandiarov N.L. // Phys.Chem. Chem. Phys. 2020. V. 22. P. 16150.
  15. 15. Хвостенко В.И. Масс-спектрометрия отрицательных ионов в органической химии. М.: Наука, 1981.
  16. 16. Пшеничнюк С.А., Асфандиаров Н.Л., Воробьев А.С., Матейчик Ш. // УФН. 2022. Т. 192. С. 177.
  17. 17. Edelson D., Griffiths J.E., McAfee K.B. // J. Chem. Phys. 1962. V. 37. P. 917.
  18. 18. Modelli A. // Phys. Chem. Chem. Phys. 2003. V. 5. P. 2923.
  19. 19. Scheer A.M., Burrow P.D. // J. Phys. Chem. B. 2006. V. 110. P. 17751.
  20. 20. Burrow P.D., Gallup G.A., Modelli A. // J. Phys. Chem. A. 200. V. 112. P. 4106.
  21. 21. Илленбергер Е., Смирнов Б.М. // УФН. 1998. Т. 168. С. 731.
  22. 22. Vorob’ev A.S., Pshenichnyuk S.A., Asfandiarov N.L., Nafikova E.P. // Tech. Phys. 2014. V. 59. P. 1277.
  23. 23. Asfandiarov N.L., Pshenichnyuk S.A., Vorob’ev A.S. et al. // Rapid Communications in Mass Spectrometry. 2014. V. 28. P. 1580.
  24. 24. Asfandiarov N.L., Pshenichnyuk S.A., Vorob’ev A.S. et al. // Rapid Communications in Mass Spectrometry. 2015. V. 29. P. 910.
  25. 25. Макаров А.А., Малиновский А.Л., Рябов Е.А. // УФН. 2012. Т. 182. С. 1047.
  26. 26. Chen E.S., Chen E.C.M. Rapid Commun Mass Spectrom. 2018. V. 32. P. 604.
  27. 27. Asfandiarov N.L., Muftakhov M.V., Pshenichnyuk S.A., et al. // J. Chem. Phys. (2021). V. 155. P. 244302.
  28. 28. Asfandiarov N.L., Muftakhov M.V., Safronov A.M. et al. // Technical Physics, 2022. V. 67. P. 1425.
  29. 29. Burrow P.D., Modelli A., Jordan K.D. // Chem. Phys. Lett. 1986. V. 132. P. 441.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library